
AFRL-IF-WP-TR-2004-1532 
 

WEAPON SYSTEM SOFTWARE 
TECHNOLOGY SUPPORT (WSSTS) 
Delivery Order 0008: Real-Time Java for 
Embedded Systems (RTJES) 
 
Edward Pla  
The Boeing Company 
Phantom Works/Network Centric Operations 
P.O. Box 516 
St. Louis, MO 63166-0516 
 
 
 
MARCH 2004 
 
 
Final Report for 21 September 2000 – 30 March 2004 
 
 

Approved for public release; distribution is unlimited. 

 
STINFO FINAL REPORT 

 
© 2004 Boeing Company 
 
This work is copyrighted. The United States has for itself and others acting on its behalf an 
unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is 
subject to copyright restrictions. 
 
Appendices A and B have been submitted to IEEE for publication in the Proceedings of the 
2003 Real-Time Technology and Applications Symposium. If published, IEEE may assert 
copyright. If so, the United States has for itself and others acting on its behalf an unlimited, 
nonexclusive, irrevocable, paid-up royalty-free worldwide license to use for its purposes. 
 
 
INFORMATION DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334 



NOTICE 
 
USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN 
THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT 
DOES NOT IN ANY WAY OBLIGATE THE US GOVERNMENT.  THE FACT THAT THE 
GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR 
OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR 
CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, 
OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM. 
 
THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION 
SERVICE (NTIS).  AT NTIS, IT WILL BE AVAILABLE TO THE GENERAL PUBLIC, 
INCLUDING FOREIGN NATIONS. 
 
THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION. 
 
 
 
 
 
/s/             /s/ 
MICHAEL T. MILLS          JAMES S. WILLIAMSON, Chief 
Project Engineer          Embedded Information Systems Branch  
            Advanced Computing Division 
            Information Directorate 
 
 
 
/s/ 
for EUGENE BLACKBURN, Chief 
Advanced Computing Division 
Information Directorate 
 
 
 
This report is published in the interest of scientific and technical information exchange and does not 
constitute approval or disapproval of its ideas or findings. 
 
Do not return copies of this report unless contractual obligations or notice on a specific document 
requires its return. 
 

roushrv
Text Box
James S. Williamson



i 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis 
Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 

March 2004 Final  09/21/2000 – 03/30/2004 
5a.  CONTRACT NUMBER 

F33615-97-D-1155-0008 
5b.  GRANT NUMBER 

4.  TITLE AND SUBTITLE 

WEAPON SYSTEM SOFTWARE TECHNOLOGY SUPPORT (WSSTS) 
Delivery Order 0008: Real-Time Java for Embedded Systems (RTJES) 

5c.  PROGRAM ELEMENT NUMBER 
78611F 

5d.  PROJECT NUMBER 

3090 
5e.  TASK NUMBER 

02 

6.  AUTHOR(S) 

Edward Pla 

5f.  WORK UNIT NUMBER 

  43 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

The Boeing Company 
8.  PERFORMING ORGANIZATION 

  REPORT NUMBER 

Phantom Works/Network Centric Operations 
P.O. Box 516 
St. Louis, MO 63166-0516 

BOEING-STL-2004P0013 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITORING AGENCY 
ACRONYM(S) 

AFRL/IFTA Information Directorate 
Air Force Research Laboratory 
Air Force Materiel Command 
Wright-Patterson AFB, OH 45433-7334 

11.  SPONSORING/MONITORING AGENCY 
REPORT NUMBER(S) 

       AFRL-IF-WP-TR-2004-1532 
12.  DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 
13.  SUPPLEMENTARY NOTES 

© 2004 Boeing Company. This work is copyrighted. The United States has for itself and others acting on its behalf an 
unlimited, paid-up, nonexclusive, irrevocable worldwide license. Any other form of use is subject to copyright 
restrictions. Appendices A and B have been submitted to IEEE for publication in the Proceedings of the 2003 Real-Time 
Technology and Applications Symposium. If published, IEEE may assert copyright. If so, the United States has for itself 
and others acting on its behalf an unlimited, nonexclusive, irrevocable, paid-up royalty-free worldwide license to use for 
its purposes. 

14.  ABSTRACT 
The Real-Time Java for Embedded Systems (RTJES) Program identified features of Real-Time (RT) Java suitable for 
meeting the challenges of future embedded information systems and defining the requirements of these features within the 
infosphere domain. After an initial survey of RT Java implementations, this program benchmarked the first commercially 
available RT Java implantation to provide an early assessment of the suitability of RT Java in the distributed real-time 
embedded system domain. Benchmarking efforts focused on assessing the performance and determinism of systems using 
RT Java. Two sets of tests were used. One examined characteristics of individual Real-Time Specification for Java (RTSJ) 
features. The other investigated performance within an environment representative of an avionics application. The RTJES 
program also performed a laboratory demonstration that showed the operational benefit of RT Java for network-centric 
applications. The demonstration highlighted RT Java code mobility, distribution, and portability. 

15.  SUBJECT TERMS 
Real-Time Java, distributed real-time embedded systems, RTJES 

16.  SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

17. LIMITATION  
OF ABSTRACT:

SAR 

18.  NUMBER 
OF PAGES 

    68 
         Michael T. Mills 
19b.  TELEPHONE NUMBER (Include Area Code) 

(937) 255-6548 x3583 
 Standard Form 298 (Rev. 8-98)   

Prescribed by ANSI Std. Z39-18 



iii 

TABLE OF CONTENTS 
Section              Page 

1  Scope................................................................................................................................1 
1.1 Identification ....................................................................................................... 1 
1.2 Introduction......................................................................................................... 1 
1.3 Programmatics .................................................................................................... 1 
1.4 Document Overview ........................................................................................... 5 

2  Technical Approach .........................................................................................................6 
2.1 Experimentation System ..................................................................................... 7 
2.2 Hardware System................................................................................................ 8 
2.3 Software System ................................................................................................. 8 
2.4 RTSJ-Related Requirements............................................................................... 9 

2.4.1 Thread ......................................................................................................... 9 

2.4.2 Scheduling................................................................................................... 9 

2.4.3 Memory Management............................................................................... 10 

2.4.4 Synchronization ........................................................................................ 10 

2.5 Application Requirements ................................................................................ 10 
2.5.1 Performance .............................................................................................. 11 

2.5.2 Determinism.............................................................................................. 11 

3  RTSJ Testing..................................................................................................................12 
3.1 Throughput........................................................................................................ 12 

3.1.1 Thread Throughput ................................................................................... 13 

3.1.2 Thread Throughput With Contending Background Threads .................... 14 

3.2 Determinism...................................................................................................... 16 
3.2.1 Periodic Start of Frame Determinism ....................................................... 16 

3.2.2 Periodic End of Frame Determinism ........................................................ 17 

3.2.3 Periodic Event Determinism..................................................................... 18 

3.3 Latency.............................................................................................................. 19 
3.3.1 Context Switch Latency............................................................................ 19 

3.3.2 Priority Inheritance Latency ..................................................................... 20 

3.3.3 Synchronization Latency .......................................................................... 21 

3.3.4 Event Latency ........................................................................................... 22 

3.4 Memory Management....................................................................................... 23 
3.4.1 Allocation Time vs. Memory Area ........................................................... 23 

3.4.2 Execution Time vs. Memory Area............................................................ 25 

3.4.3 Memory Area Entry/Exit .......................................................................... 26 

 



 iv

4  Application Testing........................................................................................................28 
4.1 End-to-End Application Testing ....................................................................... 28 

4.1.1 Steady State Execution Time .................................................................... 32 

4.1.2 Memory Usage.......................................................................................... 34 

4.1.3 Duration of Operation............................................................................... 35 

4.1.4 Scalability ................................................................................................. 36 

4.2 Flight Control Algorithm .................................................................................. 37 
4.2.1 Steady State Execution Time .................................................................... 38 

5  Real-Time Java Laboratory Demonstration...................................................................40 
5.1 Real-Time Java Demonstration Overview........................................................ 40 
5.2 Route Threat Evaluator ..................................................................................... 41 
5.3 Distribution Benchmarks .................................................................................. 42 

6  Summary ........................................................................................................................45 
7  Reference Documents ....................................................................................................46 

7.1 Boeing Documents............................................................................................ 46 
7.2 Other Documents .............................................................................................. 46 

Appendix A  IEEE RTAS ’03 Conference Paper ..............................................................47 
Appendix B  IEEE RTSS ’03 Conference Paper ...............................................................54  
List of Acronyms and Abbreviations.................................................................................58 
 
 



 v

 

LIST OF FIGURES 

Figure              Page 

Figure 1. Technical Approach............................................................................................. 6 
Figure 2. Test Methodology for JVMs ............................................................................... 9 
Figure 3. Thread Inheritance in RT Java .......................................................................... 12 
Figure 4. Execution with Different Thread Types ............................................................ 13 
Figure 5. Execution with Different Thread Types Results ............................................... 14 
Figure 6. Execution with Contending Background Threads............................................. 15 
Figure 7. Execution with Contending Background Threads Results................................ 15 
Figure 8. Periodic Start of Frame Determinism................................................................ 16 
Figure 9. Periodic Start of Frame Determinism Results ................................................... 17 
Figure 10. Periodic Event Determinism............................................................................ 18 
Figure 11. Periodic Event Determinism Results............................................................... 19 
Figure 12. Context Switch Latency .................................................................................. 20 
Figure 13. Event Latency.................................................................................................. 22 
Figure 14. Event Latency Results (microseconds) ........................................................... 23 
Figure 15. Memory Area Class Inheritance...................................................................... 23 
Figure 16. Allocation Time vs. Memory Area.................................................................. 24 
Figure 17. Maximum Memory Allocation Time per Byte for Multiple Byte Objects ..... 25 
Figure 18. Execution Time vs. Memory Area .................................................................. 25 
Figure 19. Execution Time vs. Memory Area Results...................................................... 26 
Figure 20. Memory Area Entry/Exit ................................................................................. 27 
Figure 21. Memory Area Entry/Exit Results .................................................................... 27 
Figure 22. Leveraging of MoBIES Technology ............................................................... 29 
Figure 23. 1X Test Scenario ............................................................................................. 30 
Figure 24. Larger Scale Scenarios .................................................................................... 31 
Figure 25. Steady-State Execution Time 100X Scenario ................................................. 33 
Figure 26. Duration of Operation...................................................................................... 36 
Figure 27. Scalability ........................................................................................................ 37 
Figure 28. Flight Controls Algorithm ............................................................................... 38 
Figure 29. Throughput Performance................................................................................. 39 
Figure 30. Real-Time Java Demonstration ....................................................................... 41 
Figure 31. Route Threat Evaluator Scenario..................................................................... 42 
Figure 32. Distribution Benchmarks................................................................................. 43 



 vi

LIST OF TABLES 
Table               Page 
1.  Overview of Candidate JVMs........................................................................................ 7 
2.  Software Packages ......................................................................................................... 8 
3.  Frame Execution Times Measured at Frame Completion (milliseconds) ................... 18 
4.  Priority Inheritance Latency (microseconds)............................................................... 21 
5.  Synchronization Latency (microseconds).................................................................... 21 
6.  RTSJ Feature Usage..................................................................................................... 32 
7.  Infrastructure During Peak Operation (milliseconds).................................................. 34 
8.  Start of Frame for 100X Scenario (msec) .................................................................... 34 
9.  Memory Usage............................................................................................................. 35 
10.Deterministic Performance of Route Threat Evaluator with 900 Threats ................... 44 



1 

1 Scope 

1.1 Identification 

This final technical report (TR) describes the research results of the Real-Time Java for 
Embedded Systems (RTJES) Program, Delivery Order 0008 under the Weapon System 
Software Technology Support (WSSTS) Program, Contract Number F33615-97-D-1155, 
for the Air Force Research Laboratory (AFRL). 

1.2 Introduction 

The Boeing Company has experimented with Real-Time Java1 (RT Java) as part of the 
AFRL RTJES program.  This 3 year program focused on the use of Java in hard and soft 
real-time embedded information technology system applications.  This research identified 
features of the Java programming model that may be especially helpful in meeting the 
challenges of future embedded system programs, and explored the suitability of these 
features within these domains.  In particular, the program aimed to experiment with Real-
Time (RT) Java Virtual Machines (JVMs) which implement the Real-Time Specification 
for Java (RTSJ) developed under the Sun Microsystems Java Community Process (JCP).  
The Boeing Bold Stroke Software Architecture has been leveraged to form an 
experimentation foundation and benchmark for comparison of Java-based 
implementation approaches. 2,3,4,5 

1.3 Programmatics 

The objective of the RTJES Program is to develop, demonstrate, and mature RT Java- 
based embedded information systems applications.  The RTJES effort involves 
identifying features of RT Java suitable for meeting the challenges of future embedded 
information systems and defining the requirements of these features within the infosphere 
domain. 

The RTJES Program requirements as stated in the “Statement of Work, Real-Time Java 
for Embedded Systems (RTJES), Revision A” are listed in the remainder of this section 
in italics.   Following each requirement, a statement in regular font is provided showing 
compliance.  

                                                 
1 Java and related names are trademarks of Sun Microsystems, Inc. 
2 Winter, Don C., “Modular, Reusable Flight Software For Production Aircraft”, AIAA/IEEE Digital 
Avionics Systems Conference Proceedings, October, 1996, p. 401-406. 
3 Sharp, David C., “Reducing Avionics Software Cost Through Component Based Product Line 
Development”, Software Technology Conference, April 1998. 
4 Doerr, Bryan S., and Sharp, David C., “Freeing Product Line Architectures from Execution 
Dependencies”, Software Technology Conference, May, 1999. 
5 Sharp, David C., “Avionics Product Line Software Architecture Flow Policies”, AIAA/IEEE Digital 
Avionics Systems Conference, October 1999. 
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3.1 REAL-TIME JAVA REQUIREMENTS ANALYSIS 

3.1.1 The Contractor shall assist in the definition of requirements and validation of 
selected use cases for RT Java as it relates to embedded mission processing systems. This 
effort shall investigate several aspects of RT Java’s runtime system and evaluate its 
suitability for real-time embedded information technology systems in areas of interest to 
the Government. 

Requirements definitions for RT Java based on Boeing’s experience with embedded 
mission processing systems are documented in the “Test Descriptions and Results for the 
Real-Time Java for Embedded Systems Program” document, Version 3.0, dated 17 April 
2003.  The requirements related to the RTSJ are stated in section 3 “RTJES-Related 
Requirements.”  The requirements related to RT Java application level requirements are 
stated in Section 5 “Application Requirements”.  Highlights of these requirements are 
provided in Section 2.4 “RTJES-Related Requirements” and section 2.5 “Application 
Requirements” of this final report. 

3.1.2 The Contractor shall examine strategies for using the technologies and ensuring 
appropriate testing is available. 

RT Java provides for aspect programming, code mobility, and portability.  The strategies 
for using these technologies have been tested and demonstrated on the Insertion of 
Embedded Infosphere Support Technologies  (IEIST) Demonstration on February 24, 
2004 in St. Louis, MO.  

3.1.3 The Contractor shall participate bi-monthly in selected working groups associated 
with the specification of RT Java 

Boeing actively participated in the Distributed Real-Time Expert Group Java 
Specification Request (JSR)-50.  Boeing attended the Kickoff meeting at MITRE on 18-
19 December 2000; Second meeting in Bedford, MA, on 1-2 February 2001; and Boeing 
hosted the third meeting in St. Louis, MO, on 19-20 March 2001.   Boeing also worked 
extensively with TimeSys Corporation during initial checkout of the RTSJ Reference 
Implementation. 

3.1.4 The Contractor shall document the results of this effort to include observations on 
military use of emerging standards, activities performed in the context of these meetings 
to convey military needs, and recommendations for further investigations. 

As part of the of the Distributed Real-Time Specification for Java Expert Group meeting 
in St. Louis on 19-20 March, presentations were provided by system developers from the 
F/A-18 and F-15 programs, and from a Huntsville, AL Phantom Works representative.  
Two technical papers, included in Appendix A and Appendix B of this final report, were 
published on the merits of the RTSJ standard for large-scale embedded systems mainly 
those found in military avionics mission computing systems. 
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3.2 DEVELOPMENT OF REAL-TIME JAVA-RELATED TECHNOLOGIES FOR 
MILITARY APPLICATION 

3.2.1 ARCHITECTURE 

3.2.1.1 The Contractor shall propose experiments, develop prototypes, and analyze test 
results associated with determining the architectural suitability of RT Java for embedded 
mission systems. 

Experiments and prototypes are documented in “Test Descriptions and Results for the 
Real-Time Java for Embedded Systems Program” document, Version 3.0, dated 17 April 
2003.   The RTSJ-related testing is documented Section 4 “RTSJ Related Testing” and 
the application level testing is documented in Section 6 “Real-Time Embedded 
Application Testing.”  The results of these experiments are measured against the 
established requirements for embedded mission systems. 

3.2.1.2 The Contractor shall evaluate and analyze the use of RT Java to provide adaptive 
software capabilities to real-time systems. 

One part of adaptive software capabilities is the ability to efficiently support several 
different software features.  As part of the benchmark experiments and lab demonstration, 
technologies associated with the Washington University (WU) Framework for Aspect 
Composition for an EvenT Channel (FACET) RT Event Channel and University of 
California, Irving (UCI) Zen RT CORBA were tested.  These products rely on Aspect 
Oriented Programming (AOP) technology designed to provide maximum flexibility of 
programming with a minimal size memory footprint.  At the time of our testing, the 
FACET RT Event Channel did not provide sufficient throughput performance for it to be 
included in our test suite.  The Zen RT CORBA product was used in the lab 
demonstration and benchmark results are in included in Section 5 “Real-Time Java 
Laboratory Demonstration” of this final report. 

A second part of adaptive software capabilities is the ability to support different operating 
systems.  At the time of this project, only one commercially available RTSJ 
implementation (TimeSys JTime) was available that supported only one real-time 
operating system (TimeSys RT Linux). 

3.2.1.3 The Contractor shall evaluate the performance gains of selected algorithms, 
implemented in RT Java, as compared to current programming languages.  

During application tests documented in Section 6 “Real-Time Embedded Application 
Testing” of the “Test Descriptions and Results for the Real-Time Java for Embedded 
Systems Program” document, side-by-side comparisons are performed with RT Java, 
standard Java, and C++.  These results are also summarized in Section 4 “Application 
Tests and Results” of this final report. 
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3.2.1.4 The Contractor shall examine, to the extent feasible, verification and validation 
methodologies and tools, determining applicability, value, level of effort to use, as well as 
determining areas that are not addressed and develop a plan for ensuring that 
appropriate testing is available.  

The development productivity is documented in Section 6.2 “Developmental Testing” of 
the “Test Descriptions and Results for the Real-Time Java for Embedded Systems 
Program” document.  A side-by-side comparison was performed with Real-Time Java 
and C++. 

3.2.2 DISTRIBUTED PROCESSING 

3.2.2.1 The Contractor shall prototype and analyze, to the extent feasible, distributed 
processing scenarios using a RT Java implementation.  

The RTJES program teamed with the IEIST program to perform a laboratory 
demonstration on February 24, 2004.  This demonstration successfully executed a 
distributed processing scenario using RT Java. 

3.2.2.2 The Contractor shall perform, to the extent feasible, whitebox and blackbox 
verification using a commercial RT Java implementation, of the network interface, 
concurrency, priority management, and memory management features, as they relate to 
distributed processing, present within the commercial implementation.    

In addition to the IEIST demonstration, distributed benchmarks were performed on RT 
Java portion of the scenario and have been documented in Section 5.3 “Distributed 
Benchmarks” of this final report. 

3.2.2.3 The Contractor shall implement distributed processing scenarios using Real-Time 
CORBA (RT CORBA). 

UCI Zen RT CORBA was integrated with RT Java in preparation for the IEIST 
demonstration. 

3.3 DEMONSTRATIONS 

3.3.1 DEMONSTRATION OF DISTRIBUTED RT JAVA USING CORBA 

3.3.1.1 The Contractor shall demonstrate distributed RT Java within an embedded 
mission system application using RT CORBA compliant object request brokers as per 
section 3.2.2, to the extent feasible with available products. 

The IEIST demonstrated using UCI Zen RT CORBA technology was demonstrated and 
witnessed by AFRL representatives on February 24, 2004 at the Boeing facilities in St. 
Louis, MO. 
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3.3.1.2 The Contractor shall document the results of the demonstration, including a 
description of the technology, its benefits and restrictions, and its use in the 
demonstration.  The Contractor shall collect metrics, as defined by the contractor, to 
show the benefit of the demonstrated technology.  Additionally, the contractor shall 
describe its method of deployment such that system analysts and developers can employ 
the technology in ongoing efforts. 

The results of the IEIST Demonstration are documented in Section 5 “Real-Time Java 
Laboratory Demonstration” of this final report.  Metrics on throughput and deterministic 
performance were collected and provided in this report.  The method of deployment is 
documented in this report so that system analysts and developers can employ this 
technology in ongoing efforts such as future IEIST Demonstrations. 

3.4 TECHNICAL INTERCHANGE MEETING 

The Contractor shall plan for and document the results of technical interchange 
meetings, which shall be held at Wright-Patterson AFB and the contractor’s facility. The 
kickoff meeting shall be held no later than one (1) month after the delivery order award 
at Wright-Patterson AFB. A subsequent meeting shall be held midway through the 
technical effort at the contractor’s facility. The contractor shall conduct a final technical 
interchange meeting.  

The following Technical Interchange Meetings (TIMs) were held at Wright-Patterson 
AFB and Boeing, St. Louis.   

1) Kickoff meeting was held in Wright-Patterson AFB on November 14, 2000. 
2) TIM 1 was held in Boeing, St. Louis on March 23, 2001. 
3) TIM 2 was held in Wright-Patterson AFB on October 29, 2001. 
4) TIM 3 was held in Boeing, St. Louis on May 10, 2002. 
5) TIM 4 was held in Boeing, St. Louis on December 11, 2002. 
6) TIM 5 was combined with an IEIST Review and held in Wright-Patterson AFB 

on September 16, 2003. 
7) Final review was also combined with an IEIST Review and held in St. Louis on 

February 24, 2004. 

1.4 Document Overview 

The remainder of this report begins by providing in section 2 “Technical Approach” the 
technical approach associated with the RTJES program emphasizing the experimentation 
systems and the derived requirements from our experience with avionics military 
embedded systems.  In Section 3 “RTSJ Testing” and Section 4 “Application Testing,” 
these requirements are used to formulate the RTSJ “low-level” testing and application-
level testing for RT Java.  In Section 5 “Real-Time Java Laboratory Demonstration,” the 
previous tests form the basis for the final lab demonstration with the inclusion of 
distributed benchmarking.  Final summaries of the test and laboratory results are 
provided in Section 6 “Summary.”  Reference information associated with this final 
report is listed in Section 7 “Reference Documents.”  Included in the appendix are the 
technical journals that were accepted for publication by IEEE as a result of this program. 
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2  Technical Approach 
Using our Bold Stroke experience with avionics large-scale embedded system, we 
selected a set of infrastructure requirements applicable to our domain.   From these 
requirements, we determined which requirements were supported by Real-Time Java.  
For the applicable associated requirements, a set of benchmarks and a lab demonstration 
was developed to determine the suitability to Real-Time Java.  The applicability of the 
requirements and suitability of the test results were documented.  This process is 
illustrated in Figure 1. 

 

Document applicability  
of RTJ to embedded  

systems 

Document applicability  
of RTJ to embedded  

systems 

Document suitability of 
RTJ to embedded 

systems

Document suitability of 
RTJ to embedded 

systems

Benchmark RTJ-Related 
Implementations 

and 
Lab Demonstration 

Determine Which  
Requirements RTJ Supports 

Select Challenging Bold  
Stroke Infrastructure  

Requirements 

for  
associated  

requirements 

Leverage Bold Stroke  
Experience For Java - Based  

Experiments 

Leverage Bold Stroke  
Experience For Java - Based  

Experiments 

 

Figure 1. Technical Approach 

Under the Java Community Process (JCP), each specification effort must provide three 
main items: (1) the specification itself, (2) a reference implementation of the 
specification, and (3) a test suite (referred to as the “technology compatibility kit 
(TCK)”). Since the TCK is required to test the functional semantics of compliant JVMs, 
the testing planned as part of RTJES focuses on assessment of nonfunctional properties 
of JVMs. The following key nonfunctional properties form the core experimentation 
areas: 

1) Performance: investigating the throughput and latency associated with JVM 
capabilities. 
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2) Determinism: investigating the predictability associated with JVM capabilities, 
including jitter in various periodic or timed activities.  

3) Applicability to mission critical systems: other areas of concern for mission-
critical systems, including stability, functionality, and associated patterns of 
usage. 

There are two categories of tests envisioned: (1) RTSJ-related tests, and (2) application-
related tests. RTSJ-related tests investigate the qualities of specific RTSJ capabilities. 
Application-related tests investigate the qualities of integrated systems where RT JVMs 
are leveraged to perform representative mission critical software use cases. Application-
related tests focus on assessing integrated behavior of multiple RTSJ capabilities as 
would be found in a final system.   All of these requirements are documented in Test 
Descriptions and Results for the Real-Time Java for Embedded System Program report.   
This section will highlight those requirements that are most applicable to our current 
avionics environment. 

2.1 Experimentation System 

Early on  in this program, the promises of at least a few RTSJ compatible JVMs were on 
the horizon.  Figure 2 shows a list of potential RTSJ JVM alternatives that were 
considered for evaluation.    Unfortunately, as time progressed only one commercially 
available RTSJ implementation was available on the market.   The product is JTime from 
TimeSys. 

 
Product 

RTSJ  
Compliance RTOS HW Platform

BoldStroke Infrastructure 
Status on Platform

Comment on Java 
Interoperability with Non- 

Java Tasks Comments

Timesys RT Yes, RTLinux x86 

Infrastructure ported to Redhat 
for SEC program.  Would 
downloadable patch for conversion 
RTLinux.  However, ACE/TAO 
not appear to have been ported 
RTLinux

Available Jan. 2001.  
look as good as 
thought because 

C / Ohas not been ported 
tRTLinux.  Also the 
API is different than 
Linux and the two can't 
use of each other's 
resources. 

OTI (IBM) Real-
Java 

Yes, although 
version does not 
implement entire 

QNX Neutrino 
2.0 Patch Level 
C (Can't be 
newer) x86 

Need to port to QNX 
ACE/TAO has been ported to 
QNeutrino in 

Downloadable 
Shbeta version 
available.  It only works 
an older version of 
QNeutrino.

WindRiver 
Jworks Not VxWorks PPC, etc.

Would be best 
fcomparison.

Other VxWorks tasks can run 
can be prioritized vs. the Java 

WindRiver doesn't claim 
the JVM itself is real-
Willing to work/share 

NewMonics 
C

It looks like it is 
compliant with J 
Consortium VxWorks PPC, etc. Best Infrastructure 

They support JNI and have their 
PNI, methods for Java threads 
communicated with non-Java 
It appears as though all Java 
run under one VxWorks task 
therefore, to the VxWorks 

kthey all appear to have the 
priority.

"Truly real-time 
Website says max 150 
secs to preempt GC. 
Embedded Toolkit is a 
library that is patterned 
fthe specification 

b ideveloped by the 
Consortium.  PERC runs 
a task under VxWorks 
RT Java tasks run within 

Esmertek Jbed 
RTOS Said yes but they 

actually on J-
C t

Combined  
proprietary 
RTOS 
JVM

PPC, etc. No
Can call C++ functions but 
coexist with another 
RTOS

EmWorks 

Said yes eventually 
not presently 
(sooner if 

)
RTX PPC, etc.

If they can port to VxWorks or 
Q(which we plan to port 

)

RT Java threads are mapped 
underlying RTOS threads so, 
java threads can be prioritized vs. 
Java threads and vice-

Willing to make 
compliant and port 
VxWorks or QNX if  

Table 1. Overview of Candidate JVMs 

The next section describes the final configuration using JTime for both the hardware and 
software platform used for the testing and lab demonstration. 
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2.2 Hardware System 

The same hardware, a Dell GX 150, was used for all benchmark development and 
execution. This computer has a single 1.2-GHz Pentium 4 processor. It has a 12-GB hard 
drive, 256 MB of RAM, and 256 KB of cache memory. 

2.3 Software System 

As of this writing, the only known planned commercial implementation of the RTSJ is 
JTime from TimeSys, for which we received a pre-release version. Prior to availability of 
this product, we developed tests and measured results on the openly available Reference 
Implementation (RI), also from TimeSys. The RI was designed to investigate and 
demonstrate the semantics of the RTSJ, not for acceptable run-time performance. Our 
prior RI benchmarking confirmed this.  

The test platform was configured with Red Hat’s Linux version 7.2, with real-time 
support provided by TimeSys Linux/NET for X86 UNI platform operating system 
extensions, version 3.1.214c, and TimeSys RT JVM version 3.5.3. Figure 3 lists the 
major software products used for the experiments, as well as the compiler options used 
that are associated with performance. 

 C++ RT 
Java Java 

Build 
Tools 

GNU Make version 
3.79.1 

Apache Ant 
Version 1.5.3 

Compilers 

GNU C++ version 
3.1.1( -O3 -g   

-fno 
-exceptions  
-fcheck-new) 

Jikes version 1.14 
(no compiler 
options used) 

 

TimeSys 
RT JVM 
version 
3.5.3 

Run-Time 
Platform 

TimeSys Linux/NET for X86 
UNI version 3.1.214c 

Java 
J2SE 
with 

HotSpot 
version 
1.4.1-2 

Table 2. Software Packages 

All Java tests were run with bytecodes generated by Jikes being interpreted in the JVM. 
For associated tests, the RT JVM was executed with a memory allocation pool of 50 MB 
(-Xms50M). The immortal memory size was set to 10 MB 
(IMMORTAL_SIZE=10000000). 

To minimize nondeterministic system effects, all unnecessary operating services were 
stopped, virtual memory was disabled, and the system was rebooted in between tests.   

The testing methodology for both the JTime from TimeSys and J9 from IBM is illustrated 
in Figure 4.   The test application ran from a console window and output was recorded in 
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a test file.  The J9 JVM did not improve significantly from its original implementation 
and was later dropped as a potential test platform. 

 

J9 on QNX RTP 

OR

JTime on Linux/RT 

 

Figure 2. Test Methodology for JVMs 

2.4 RTSJ-Related Requirements 

The RTSJ capabilities supported by the RT JVMs exhibit a wide range of requirements.  
The requirements presented below come from requirements used on various Boldstroke 
and Boeing military projects.  This section covers only the requirements for the most 
important RTSJ-related tests.  The complete set of the RTSJ-related requirements can be 
found in the Test Descriptions and Results for the Real-Time Java for Embedded System 
Program report, Section 3 “RTJES-Related Requirements.”  

2.4.1 Thread 

The thread requirements are concerned with consistency in the start and end time 
determinism of various thread and latencies in switching between threads.   

Context Switch Latency - Context switch latency shall be less than 10 microseconds. 

Thread throughput - Throughput in different threads shall not vary by more than 1 per 
cent for No Heap Real-Time Threads (NHRT) and Real-Time Threads (RT). 

2.4.2 Scheduling 

The scheduling requirements are concerned with the processor utilization times and 
latencies in executing the overrun handler. 

Periodic Start of Frame Determinism – Jitter shall be within 1 per cent of the period.  
With a representative avionics-processing rate of 20 Hz, the maximum allowable jitter is 
0.5 milliseconds. 
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Periodic End of Frame Determinism – Completion time differences shall be under 0.5 
milliseconds. This represents 1 per cent of a 20-Hz frame. 

Aperiodic End of Frame Determinism - Completion time differences shall be under 0.5 
milliseconds.  This represents 1 per cent of a 20-Hz frame. 

2.4.3 Memory Management 

The memory management requirements are concerned with the processor utilization 
times for entering and exiting Memory Areas, allocating objects, finalization 
performance, and garbage collection performance. 

Instruction execution time in different Memory Areas - The throughput values shall be 
within 1 per cent across all memory areas. 

Object allocation time in different Memory Areas - Average allocation time less than 2.0 
microseconds/byte shall be acceptable. 

Memory Area entry/exit times - Average memory area entry time shall be 100 
microseconds or less.  Average memory area exit time shall be 100 microseconds or less. 

Jitter execution time performance - Jitter shall be less than 0.5 milliseconds for each 
memory area.  This represents 1 per cent of a 20-Hz frame. 

2.4.4 Synchronization 

The synchronization requirements are concerned with measuring various software system 
latencies. 

Priority inheritance latency - Priority latency shall be under 50 microseconds for 
boosting and unboosting priorities combined. 

Synchronization latency - Synchronization latency shall be under 10 microseconds of 
overhead (difference between synchronized and non-synchronized). 

Synchronization block latency - Synchronization latency shall be under 10 microseconds 
of overhead (difference between synchronized and non-synchronized block execution 
times). 

2.5 Application Requirements 

For this evaluation, we have captured key operational metrics based on our experience 
with the required run-time performance of a range of avionics systems. Since the RT 
JVM does not include specific support for distribution, these requirements are captured at 
the level of the complete software system and therefore apply primarily in the context of 
benchmark tests that are representative of full-scale single processor avionic mission 
computing systems. 
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2.5.1 Performance 

Performance in this context refers to the capability of a software system to meet timing 
and sizing constraints imposed by the application functionality and the hardware and 
software operating environment.   

Steady State Time - The software system shall support execution of multiple periodic 
rates of application components up to 20 Hz. The execution time required for 
infrastructure services (e.g. middleware, JVM, operating system) shall not exceed 25 per 
cent of the total processing time (when measured in a full-scale system that is fully 
exercising those services). 

Memory Usage - The software system shall support execution within a memory limit of 
approximately 100 MB, including a full application load. 

Duration of Operation - The software system shall support stable execution up to 
approximately 10 hours. 

2.5.2 Determinism 

Determinism in this context refers to the capability of a software system to have 
predictable resource utilization, regardless of speed.  

Steady State Time - The variability in the start of periodic processing frames shall not 
exceed 1 per cent of the associated period.  The variability in the time required to process 
the application within each execution rate shall not exceed 5 per cent of the associated 
period. 

Memory Usage - The variability in the memory used by the software system during 
multiple identical runs shall not exceed 5 per cent. 

Scalability - The software system will minimize the performance cost for adding software 
functionality to O (n log n). 
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3 RTSJ Testing 
These tests focus on assessing the performance of specific RTSJ capabilities. These tests 
have been added to the RTJPerf open source RT JVM benchmarking suite established by 
Angelo Corsaro at the University of California, Irvine (UCI) [6] and Washington 
University in St. Louis.  Taken together, tests were created to assess determinism, 
latency, and throughput associated with threads, scheduling, memory management, 
synchronization, time, timers, asynchrony, exceptions, and class loader and dynamic 
linking.  Only the tests deemed of most importance are included here.   A complete set of 
the tests can be found in the Test Descriptions and Results for the Real-Time Java for 
Embedded System Program report. 

For each test, a description of the test is included, along with success criteria, and 
experimental results and analysis.  The success criteria are based on requirements and 
experiences with avionic mission computing systems. While these criteria are 
intentionally domain specific, they do capture expectations for an important category of 
embedded systems.   In all cases, the raw measured values are provided for comparison 
against criteria in other domains. 

3.1 Throughput 

The RTSJ introduces two new types of threads as shown in Figure 5: RT threads and No 
Heap RT (NHRT) threads. RT threads support, at a minimum, basic real-time preemptive 
scheduling. No Heap RT threads add the guarantee that execution will be independent of 
garbage collection but with the additional restriction that heap-based memory not be 
used. This section outlines tests assessing the throughput of these different thread types in 
varying execution environments. 

 

ja v a . la n g . Th r e a d

ja v a x . r e a lt im e . R e a lt im e Th r e a d

ja v a x . r e a lt im e . N o H e a p R e a lt im e Th r e a d

 

Figure 3. Thread Inheritance in RT Java 

                                                 

[6] A. Corsaro, D.C. Schmidt, “Evaluating Real-Time Features and Performance for Real-time 
Embedded Systems”, Proceedings of the 8th IEEE Real-time Technology and Applications 
Symposium, September 2002. 
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3.1.1 Thread Throughput 

Description:  Record the execution time of a computationally intensive algorithm, 
representative of avionics mission computing processing, when run in different thread 
types: No Heap Real-Time Thread (NHRT), Real-Time Thread (RT), and 
java.lang.Thread. All thread types will be processing in a 20-Hz frame.  In the thread’s 
run() method, log timestamps before and after the algorithm executes.  This 
computationally intensive algorithm is a flight controls algorithm that is CPU intensive 
and reads data from two different input files.  The flight controls algorithm performs all 
of its memory allocation and reference storage upon initiation.  The No Heap Real-Time 
Threads were executed using Immortal memory that has no garbage collection while the 
Real-Time Threads were executed from heap memory.     

Success Criteria:  Throughput in different threads shall not vary by more than 1 per cent.  
The test is illustrated in Figure 6. 

 

NHRT NHRT 

flight controls algorithm  
execution time 

RT 

Normal Normal 

300 Samples 
10 28 Priority 

Normal RT NHRT 
Test  

Conditions 
Thread Type 

300 Samples 
10 28 Priority 

Normal RT NHRT 
Test  

Conditions 
Thread Type 

• Description 
– Run samples of  

computationally 
flight controls 

– Measure execution 
– Compute percent 

for average, min, and 
between different types 
threads. 

time 

 

Figure 4. Execution with Different Thread Types 

Results:  The throughput for NHRT, RT, and normal java threads on the selected 
algorithm was comparable. The largest percentage time difference between the three 
thread types was 0.643 per cent for the NHRT and RT threads.  See Figure 7 for more 
throughput comparisons between NHRT, RT, and normal threads. 
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NHRT (ms) RT (ms) Normal (ms) % Difference 

Ave 3.5201 3.5087 3.5174 0.324% 

Min 3.5109 3.4977 3.5076 0.376% 
Max 3.5372 3.5601 3.5439 0.643% 

3.46 
3.48 
3.50 
3.52 
3.54 
3.56 
3.58 

NHRT RT Normal
Thread Ex

ec
ut

io
n 

Ti
m

e 
(m

se
c)

 

  

Figure 5. Execution with Different Thread Types Results 

3.1.2 Thread Throughput With Contending Background Threads 

Description: Record the execution time of the same mission computing algorithm, when 
run with different scheduling parameters and competing threads.  The algorithm is CPU 
intensive and executes in a NoHeapRealtimeThread with a priority of 260.  Measure how 
the same functionality scheduled with varying numbers of lower priority threads behaves.  
The contending threads execute in RealtimeThreads with lower priorities.  The lower 
priority threads log timestamps and invoke yield() methods.  All threads are periodic, 
executing at a 20-Hz frame rate. 

Success Criteria: Difference between the tests with no background threads and the tests 
with 15 background threads shall be less than 5 per cent.  The test is illustrated in Figure 
8.  
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 • Description 
– Run periodic samples of  the 

computationally intensive flight 
controls algorithm with/without 
contending background thread.

– Measure execution times
– Compute percent difference 

between max and min execution 
time. 

NHRT 

time 

15 RTs 

250 N/A Priority of RTs 

260 NHRT 
100Periodicity 

20 Duration 

15 0 

Test 

Number of RTs 

Test Case pr
io

rit
y 

active 
awaiting activation 
idle flight controls 

execution time 

No 
Contention 

Contention

 

Figure 6. Execution with Contending Background Threads 

Result:  The first case schedules only the thread being analyzed, while the second case 
schedules the thread to be analyzed along with 15 background threads.  The difference 
between the maximum, minimum, and average data points were all below 1 per cent.  
This meets our success criteria.  See Figure 9 for detailed metrics. 

3.48

3.50

3.52

3.54

3.56

3.58

No Contention Contention

Test Case

Ex
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No Contention (ms) Contention (ms) % Difference 

Avg 3.5253 3.5290 0.1039% 
Max 3.5495 3.5669 0.7673% 
Min 3.5218 3.5244 0.0756% 

Jitter 0.0177 0.0424  

Figure 7. Execution with Contending Background Threads Results 
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3.2 Determinism 

The RTSJ provides direct support for initiating functionality that needs to be run at 
periodic intervals either via thread scheduling or via events driven by timers. This section 
outlines tests investigating timing jitter associated with initiating and completing periodic 
activities. 

3.2.1 Periodic Start of Frame Determinism 

Description: Using the PeriodicParameters class, establish a periodic thread.  
Immediately after the waitForNextPeriod() call, log a timestamp and calculate the 
time between invocations. Two tests were conducted.  The first test was executed with 
only a single 20-Hz NoHeapRealtimeThread being analyzed, while the second test was 
executed with the 20-Hz NoHeapRealtimeThread thread being analyzed while another 
fifteen lower priority RealtimeThread threads were executing at a 20-Hz frame rate.  The 
lower priority threads log timestamps and invoke yield() methods.  All threads are 
periodic, executing at a 20-Hz frame rate. 

Success Criteria: Jitter shall be within 1 per cent of the period. With a representative 
avionics processing rate of 20 Hz, the maximum allowable jitter is 0.5 milliseconds.   The 
test is illustrated in Figure 10.  

 

NHRT NHRT 

time 

15 RTs 

• Description 
– Run periodic samples of 

algorithm then yield 
contending background 

– Measure delta start of frame 
– Compute percent difference 

max and min 

250N/A Priority of RTs 

260 NHRT Priority 
50 millisecondsPeriodicity 

30 secondsDuration 

150 Number of RTs 

ContentionNo  
Contention 

Test Conditions 
Test Case

250N/A Priority of RTs 

260 NHRT Priority 
50 millisecondsPeriodicity 

30 secondsDuration 

150 Number of RTs 

ContentionNo  
Contention 

Test Conditions 
Test Case pr

io
rit

y  

active
awaiting activation 
idle

delta start of  
frame 

 

Figure 8. Periodic Start of Frame Determinism 

Results: The maximum jitter in both tests easily surpassed the success criteria of 0.5 
milliseconds.  See Figure 11 for details. 
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No Contention (ms) Contention (ms) 

Avg 50.0 50.0 
Max 50.0048 50.0241 
Min 49.9954 49.9794 

Difference 0.0094 0.0447 
 

Figure 9. Periodic Start of Frame Determinism Results 

3.2.2 Periodic End of Frame Determinism 

Description: Using the PeriodicParameters class, set up a periodic 
NoHeapRealtimeThread thread.  Immediately after the waitForNextPeriod() call, 
execute an algorithm of significant duration but not longer than the period.  After the 
algorithm completes, log a timestamp and calculate the difference between successive 
timestamps. Repeat with and without competing lower priority RealtimeThread threads 
as for the previous test.  The lower priority threads log timestamps and invoke yield() 
methods.  All threads are periodic, executing at a 20-Hz frame rate.  

Success Criteria: Completion time differences shall be under 0.5 milliseconds. This 
represents 1 per cent of a 20-Hz frame. 

Results: The maximum jitter for 0 and 15 competing threads was 0.0282 milliseconds and 
0.1441 milliseconds, respectively, which easily met the success criteria.  See Figure 12 
for specific measurement results. 
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 0 Other Threads 15 Other Threads

Avg 50.0000 50.0000 

Max 50.0153 50.0688 

Min 49.9870 49.9247 

Difference 0.0282 0.1441 

 

Table 3. Frame Execution Times Measured at Frame Completion (milliseconds) 

 

3.2.3 Periodic Event Determinism 

Description: Measure the jitter in PeriodicTimer driven AsyncEvents.  Immediately 
inside the handleAsyncEvent method, log a timestamp and calculate the time between 
invocations. The first test was executed with only a single 20-Hz NoHeapRealtimeThread 
being analyzed, while the second test was executed with the 20-Hz 
NoHeapRealtimeThread thread being analyzed while another fifteen lower priority 
RealtimeThread threads were executing at a 20-Hz processing rate also.   

Success Criteria: Periodic event timing differences shall be under 0.5 milliseconds, 1 per 
cent of a 20-Hz (50 millisecond) frame.  This test is illustrated in Figure 13. 

 • Description 
– Run asynchronous events driven by a 

periodic timer. 
– Measure the delta receipt of the 

asynchronous event fires.
– Compute percent difference between 

max and min periods. 

250N/A Priority of RTs 

260NHRT Priority 
50 millisecondsPeriodicity 

30 secondsDuration 

150 Number of RTs 

Bound /
Unbound

Contention

Bound /
Unbound

No Contention

Test Conditions 
Test Case

250N/A Priority of RTs 

260NHRT Priority 
50 millisecondsPeriodicity 

30 secondsDuration 

150 Number of RTs 

Bound /
Unbound

Contention

Bound /
Unbound

No Contention

Test Conditions 
Test Case

periodic 
timer

time 

bound 
handler

active
awaiting activation 
idle

delta receipt of 
event fires 

unbound 
handler

 

Figure 10. Periodic Event Determinism 

Results: The first case was run with the AsyncEventHandler analyzing a single thread 
while the second case was executed with the AsyncEventHandler analyzing a single 



19 

thread with fifteen background threads.  The third case was run with the 
BoundAsyncEventHandler analyzing one thread while the fourth case was executed with 
the BoundAsyncEventHandler analyzing a single thread with fifteen background threads.  
In all cases, the jitter met the success criteria.  See Figure14 for more completion time 
comparisons with and without competing threads.   
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Figure 11. Periodic Event Determinism Results 

3.3 Latency 

This section details tests assessing delays associated with context switching, 
synchronization, and event delivery. The RTSJ supports event-based programming for 
two types of event handlers: bound and unbound.  A bound event handler creates one 
thread that is permanently bound to the handler and remains active for all event fires.  An 
unbound event handler creates a new thread with each event fire. 

3.3.1 Context Switch Latency 

Description:  Initiate a high priority thread and a lower priority thread.  Both threads will 
be executing at a 20-Hz frame rate.  In the higher priority thread, log a timestamp before 
the yield() in the run method.  In the lower priority thread, log a timestamp after the 
yield() in the run method.  Then compute the latency between the higher priority 
thread’s timestamp and the lower priority thread’s timestamp. 

Success Criteria: Context switch latency shall be less than 10 microseconds.  This test is 
illustrated in Figure 15. 
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Results: The results show a median of approximately 2.1 microseconds. Some of the 
samples spike to 2.3-2.8 microseconds, probably indicating that some processing in 
addition to the context switch is being run following the yield() call. Even with this, 
however, the maximum time to switch between threads was roughly 2.8 microseconds, 
which is better than the 10 microsecond success criteria.   
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Figure 12. Context Switch Latency 

3.3.2 Priority Inheritance Latency 

Description: This test measures a relatively simple three thread case of priority 
inheritance. The low priority thread (LPT) starts and enters a synchronized method.  
While in that method, the medium priority thread (MPT) starts and preempts the LPT.  
While the MPT runs, a high priority thread (HPT) preempts the MPT and attempts to 
enter the same synchronized method the LPT presently has a lock on.  According to 
priority inheritance, the LPT should get boosted up to the priority of the HPT so it can 
finish with the synchronized method, thus allowing the HPT to run as soon as possible.  
Log timestamps before and after the calls to the synchronized method.  Also log 
timestamps at the first and last instructions inside the synchronized method.  These 
timestamps are used to measure the boost, unboost, and total priority inheritance latency 
times.  Each thread will execute at a 20-Hz frame rate. 

Success Criteria: Priority latency shall be under 50 microseconds for boosting and 
unboosting priorities combined. 
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Results: For both cases the maximum latency was roughly 9.0 microseconds, thus the test 
passed the 50 microsecond success criteria.  See Figure 16 for more priority inheritance 
boost, unboost, and total latencies. 

 Boost Unboost

Latency 

(Boost + 

Unboost) 

Avg 5.1372 2.7735 7.9107 

Max 6.2626 3.1574 8.9635 

Min 4.4778 2.6517 7.1566 

Delta 1.7849 0.5057 1.8070 

Table 4. Priority Inheritance Latency (microseconds) 

3.3.3 Synchronization Latency 

Description: Record the time elapsed to enter a synchronized method versus a non-
synchronized method.  Log timestamps prior to the method call and once inside the 
synchronized and non-synchronized methods.  Each thread will execute at a 20-Hz frame 
rate. 

Success Criteria: Synchronization latency shall be under 5 microseconds of overhead 
(difference between synchronized and non-synchronized). 

Results: The test was executed for the synchronized and normal method latency cases.  
For each case the latency differences were less than 2 microseconds, thus this test passes 
the 5 microsecond threshold.  See Figure 17 for more synchronized and non-
synchronized latencies. 

 

Non- 

Synchronized Synchronized

 

Difference 

Avg 1.3351 3.2385 1.9034 

Max 1.7257 3.6962 1.9705 

Min 1.3153 3.1975 1.8822 

Table 5. Synchronization Latency (microseconds) 
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3.3.4 Event Latency 

Description: Measure the latency from the firing of an AsyncEvent to the time it is 
handled.  Log timestamps prior to the fire and once the event is handled.  Each thread 
will execute at a 20-Hz frame rate. 

Success Criteria: Event latency shall be under 100 microseconds.  The test is illustrated 
in Figure 18. 

 • Description 
– Run asynchronous events driven by a 

periodic timer. 
– Measure the difference between the 

event fire and receipt of the event fire.
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Figure 13. Event Latency 

Results:  BoundAsyncEventHandler was used for the first case and AsyncEventHandler 
was used for the second.  Both the BoundAsyncEventHandler and AsyncEventHandler 
were acceptable for our needs since all cases met the success criteria.  Figure 19 
compares the BoundAsyncEventHandler and AsyncEventHandler latencies. Analysis of 
the data indicates that a relatively few measurement spikes were observed. 
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Figure 14. Event Latency Results (microseconds) 

3.4 Memory Management 

The RTSJ defines a range of different memory types to address real-time aspects of 
memory management and garbage collection. This section details tests with allocation 
throughput, entry, and exit performance for the heap, immortal, linear time (LT) memory, 
and variable time (VT) memory areas.  The Jet Propulsion Laboratory created the 
allocation time and throughput time tests.  In Figure 20, the memory area classes that are 
colored represent the classes with test results included herein. 

 MemoryArea

ImmortalMemoryScopedMemory ImmortalPhysical 
Memory 

HeapMemory

LT Memory VT Memory LT Physical Memory VT Physical Memory 
 

Figure 15. Memory Area Class Inheritance 

3.4.1 Allocation Time vs. Memory Area 

Description:  Measure the time required to allocate the same sized objects in different 
memory areas.  Place time stamps before and after the memory allocation code.  Then 
calculate the difference between before and after times for memory allocation.  Perform 
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this test for various object sizes from 4 to 16,384 bytes.  Each thread executes at a 20-Hz 
periodic frame rate. 

Success Criteria: Average allocation time less than 2 microseconds/byte shall be 
acceptable.  This test is illustrated in Figure 21.  

 • Description 
– Measure the time required to allocated the same sized objects  

when running different memory area types. 
– Perform this test with various sized objects. 
– Average the samples per object size and memory area types and  

analyze results. 

RT RT 

time 

4, 8, 64, 512, 4096, and  
16,384 

Object Sizes  
(bytes) 

Heap, Immortal, LT, VT Memory Areas 
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Real-time Thread Type 
Test Conditions 

4, 8, 64, 512, 4096, and  
16,384 

Object Sizes  
(bytes) 

Memory Areas 

10 Samples 

Real-time Thread Type 
Test Conditions 

memory  
allocation 

 

Figure 16. Allocation Time vs. Memory Area 

Results:  The average time to create 64 byte objects took less than 16 microseconds for 
all memory areas, meeting the success criteria.  The times for immortal, linear time, and 
variable time memory areas were nearly identical for this test. See Figure 22 for per-byte 
allocation times in the different memory areas. 



25 

 

0 
0.25 

0.5 
0.75 

1 
1.25 

1 2 3 4 5 6
Samples (1=4 bytes, 2=8 bytes, 3=64 bytes, 4=512 bytes, 

5=4096 bytes, 6=16384 bytes) 

Ti
m

e 
(m

ic
ro

se
co

nd
s)
 

Immortal 
LT Mem 
VT Mem 

       Heap

  

Figure 17. Maximum Memory Allocation Time per Byte for Multiple Byte Objects 

3.4.2 Execution Time vs. Memory Area 

Description: Measure the time needed to execute a division, logarithmic, and no 
operation in each memory area.  The division operation is a ‘divide by 2’ while the log 
operation takes the ‘log of 5’. Place time stamps before and after the call to each 
operation.  Each thread will execute at a 20-Hz frame rate.  The test is illustrated in 
Figure 23. 
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Figure 18. Execution Time vs. Memory Area 



26 

Success Criteria: The throughput values shall be within 5 per cent across all memory 
types. 

Result:  As tabulated in Figure 24, the percent variation of operation execution across all 
memory areas was less than 4 per cent, thus meeting our success criteria.  
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Division 0.5300 0.5500 4%
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Max (µs) % Delta

0.5300 0.5500 4%

1.0400 1.0667 2.5%

No op 0.3667 0.3700 0.9%
 

Figure 19. Execution Time vs. Memory Area Results  

3.4.3 Memory Area Entry/Exit 

Description: Log timestamps before entering a Memory Area and immediately upon 
exiting.  Also record timestamps prior to leaving the scope and immediately after leaving 
the scope.  Each thread will execute at a 20-Hz frame rate. 

Success Criteria:  Average memory area entry time shall be 100 microseconds or less.  
Average memory area exit time shall be 100 microseconds or less.  The test is illustrated 
in Figure 25. 
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Figure 20. Memory Area Entry/Exit 

Results: The average memory entry and exit times were under 20 microseconds for all 
measured memory types.  Therefore, this test passed the success criteria.  The exit times 
for LT memory and VT memory was substantially more than for other memory areas 
because the garbage collector is executed on these memory areas when their scope is 
freed.  See Figure 26 for a graph mapping the time to enter and exit the various memory 
areas.  
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Figure 21. Memory Area Entry/Exit Results 
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4 Application Testing 

The application test suite consists of a set of end-to-end application test scenarios and a 
flight control function. The end-to-end test scenarios were designed to investigate 
performance of component, middleware, and JVM interactions and behaviors in the 
context of a representative cyclically executing avionics application architecture.  The 
flight control function was designed to investigate performance of a representative 
numerical algorithm.  

4.1 End-to-End Application Testing 

When testing the feasibility of a large-scale mission critical embedded system, a balance 
between a small-scale prototype and full-scale development was considered. Small-scale 
prototypes provide an early indication of the predicted behavior of a full-scale system.  
Unfortunately, costly problems sometimes occur when these prototypes are extrapolated 
to a large-scale system.   Problems range from unexpected increase of processor 
throughput, increase of memory utilization, increase use of scheduling resources.  A full-
scale development model requires a significant amount of manpower to develop.  

 To balance these forces, various size scenarios were developed by combining a number 
of slightly modified small-scale scenarios into larger-scale scenarios. This collection of 
scenarios provided sufficient test coverage for predicting the behavior of a full-scale 
mission-critical embedded system at reduced development costs.  

Leveraging technology from the DARPA Model-Based Integration of Embedded 
Software (MoBIES) program allowed for rapid development of these scenarios7.   The 
MoBIES program includes an Open Experiment Platform (OEP) with an XML 
configuration framework and development tool set. The OEP provides a number of 
different run time product scenarios which illustrate various configurations of 
component-based real-time embedded systems.  These scenarios contain representative 
component configurations and interactions, but without representative functionality to 
ease development and avoid classification concerns. 

The MoBIES process development for Java is illustrated in Figure 27.  A MoBIES 
configuration file in XML format was developed from the MoBIES product scenarios.   
A C++ translator converted the configuration file from XML to C++ header code and the 
Java translator converted the configuration file from XML to Java code.    A Java event 
channel was developed utilizing the real time features of Java to replace services 
provided by the C++ Bold Stroke Architecture.   The software components were 
translated from C++ to Java.  A make file was used to build the C++ and Jakarta-ANT 
was used to build the Java.  This parallel development effort provided for a side-by-side 
comparison of interpreted Real-Time Java to compiled C++.  

                                                 
7 http://dtsn.darpa.mil/ixo/mobies.asp 
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 Figure 22. Leveraging of MoBIES Technology 

For benchmarking purposes, a modified version of a MoBIES Product Scenario with 
oscillating modal behavior was selected. This product scenario has been identified as the 
“1X” scenario and is illustrated in Figure 28.   The original version provided use of three 
rate group priority threads (20-Hz, 5-Hz, and 1-Hz), event correlation, and modal 
behavior.  The benchmark version preserved these attributes and provided for a more 
realistic ratio of “full channel” and Event Registration Manager (ERM) event 
notifications8.  Full channel events include scheduling and dispatching support, while 
ERM notification bypasses scheduling and provides a direct connection between supplier 
and consumer components for significantly increased performance.  This product 
scenario has been identified as the “1X” scenario.    

The bottom Infrastructure layer contains the frameController and the event 
channel.  For simplicity, the event channel is not shown in Figure 28, but its role will be 
described here. The frameController is activated via a 20-Hz periodic timer and 
runs at the highest priority.  The frameController pushes events to components in 
the Physical Device layer as shown via Push() invocations (1 through 4).   These 
Push() invocations actually represent a multiple step process that includes an event 
supplier (e.g., frameController) invoking an event channel method to publish an 
event, the event channel determining which event consumers, if any, have subscribed to 
the event, and then the event channel invoking Push() methods on any subscriber 
components (e.g., device1).  The frameController propagates these events at 
specified periodic intervals: 20-Hz for the device1 component, 5-Hz for the device3 
and device4 components, and 1-Hz. for the device2 component. Since it runs at the 
highest rate, the device1 component is scheduled at the highest priority in rate 
                                                 
8 Tim Harrison and David Levine and Douglas C. Schmidt, “The Design and Performance of a 
Real-time CORBA Event Service”, OOPSLA 1997, October 1997. 
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monotonic manner and is the second component to be activated.  The device1 
component is activated from a full channel event dispatch originating from the 
frameController. The remainder of the 20-Hz components (Global Positioning 
System (GPS), airframe, and tacticalSteering) are executed in turn by 
streamlined ERM events via Push methods (5 through 7).  The 5-Hz components on the 
right side of Figure 28 execute in a similar manner at a medium priority. As depicted in 
the middle of Figure 28, a full channel event is delivered to the pilotControl 
component only after both device2 and device3 have published events, resulting in a 
1-Hz low-priority invocation. This combination technique is referred to as “AND” 
correlation.  In this particular case, the two invocations shown (16 and 17) represent the 
publication of events to the event channel; only a single invocation to the 
pilotControl component would be made by the event channel (via 17). Each 
pilotControl execution results in a toggling between tactical steering (i.e., Mode 
“TAC”) and navigation steering (Mode “NAV”) via invocations to the 
tacticalSteering and navSteering components (18 and 19).  The modal 
components (tacticalSteering and navSteering) are designed to only publish 
events when active. The navDisplay receives any event published by either of the 
modal steering components (8, 12, and 15), a technique referred to as “OR” correlation. 
When taken together, this 1X scenario provides a realistic multirate cyclic avionics 
execution context, but with a very small number of application components. 
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Figure 23. 1X Test Scenario 

The other derived scenarios are illustrated in Figure 29.   The highlighted 100X scenario 
contains a representative number of components and events as representative avionics 
mission computing systems and is used to evaluate success criteria.  The Java 100X 
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performance was quick enough that the processing for the different rates always 
completed prior to the start of the next 20-Hz (fastest rate) frame, avoiding preemption. A 
Java 200X scenario was therefore created to measure the effects of preemption on 
performance and further investigate scalability. These expanded scenarios considered 
typical production development by increasing the number of component types and 
decreasing the percentage of full channel notifications as the number of component 
instances increase.  As a result of the modal behavior of the scenario, the percentage of 
full channel notifications varies depending on the operation mode of the scenario. 

To provide comparable tests, the preexisting MoBIES C++ application components were 
directly translated to Java.  On the C++ side, the preexisting full-scale middleware 
services (e.g., CORBA real-time event service) were replaced with lightweight POSIX 
wrappers and prototype services that directly matched the features included in the Java 
event service prototype.  While these implementations do not leverage language-specific 
features and idioms, this approach does provide a fair side-by-side comparison of 
interpreted Real-Time Java to compiled C++ in a realistic avionics application context. 
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Figure 24. Larger Scale Scenarios 

A number of RTSJ features associated with scheduling and event handling are used in 
these tests and listed in Figure 30. RTSJ class types are listed in italics. 
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Object Name:  
Class Name 

Purpose 

frameController: 
FrameController 
(extended from RealtimeThread) 

Dispatches start of rate group events to activate components in 
the physical device layer. 

fcPeriodics: 
PeriodicParameters 

Set the start time, period, cost, and deadline for the frame 
controller. 

fcPriority : 
PriorityParameters 

Sets the priority of the frame controller’s periodic parameters. 

fcStartTime:  
RelativeTime 

Sets the start time for the frame controller’s periodic parameters. 

fcPeriodicTime: RelativeTime Sets the period, cost, and deadline for the frame controller’s 
periodic parameters. 

eventQueue[n]: EventQueue  
(extended from BoundAsyncEvent 
Hander) 

Stores received and dispatched events from a particular rate 
group. n represents the number of rate group threads. 

eqAsyncEvent: AsyncEvent Enables the event queue dispatcher when an event is received. 

eqPriority: PriorityParameters Sets the priority of the event queue. 

 

Table 6. RTSJ Feature Usage 

4.1.1 Steady-State Execution Time 

Test Description:  Measure the frame initiation, periodic application processing, and 
infrastructure processing for each test scenario.   For the Java implementation, execute 
the processing within real-time threads (not No Heap Real-time Threads) in heap memory 
(not immortal memory). 

Performance Success Criteria: The software system shall support execution of multiple 
periodic rates of application components up to 20 Hz. The execution time required for 
infrastructure services (e.g., middleware, JVM, operating system) shall not exceed 
roughly 10 per cent of the total processing time for the set of services included in this 
benchmark.  

Performance Results:  The results from the Java and C++ 100X scenarios are illustrated 
in Figure 31. The figure displays 16 seconds of processing time (20 samples per second 
for 16 seconds for 320 total samples). The 2-second cyclical (40 samples at 20 Hz) 
processing represents the scenario’s modal behavior, with the system changing mode 
each second. Mode TAC requires more execution time than Mode NAV due to a greater 
number of components that run at the highest rate. The 20-Hz line represents the sum of 
the processing time within each 20-Hz period for all 20-Hz rate components. The 5-Hz 
line shown is obtained by summing all of the associated component execution times over 
a 200-millisecond period and dividing the sum by four to normalize it to the 20-Hz data. 
Similarly, the 1-Hz and infrastructure lines indicate the aggregate time of 1-Hz 
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components and infrastructure processing for a 1 second period, scaled to 20-Hz periods. 
Thus, within each mode, adding up the times for each rate provides the average execution 
time used within each 20-Hz processing frame. For example, if the beginning of the RT 
Java time trace is observed, approximately 0.1 + 3.0 + 4.1 + 7.6 = 14.8 milliseconds out 
of every 20-Hz frame are consumed by application and infrastructure execution, leaving 
50 – 14.8 = 35.2 milliseconds of idle time in each frame on average. 
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Figure 25. Steady-State Execution Time 100X Scenario 

Using approximately 800 software components, the Java successfully repeated the C++ 
real-time behavior and properly supported the periodic rates. The 100X scenario 
processed approximately 600 full-channel events and 10,000 ERM events per second. All 
deadlines were achieved with 85.05 per cent of the processor utilization available for 
application processing. 

The samples of peak usage of infrastructure services  (i.e., while in Mode TAC) are 
shown in Figure 32. With the Java 100X scenario, the infrastructure services peaked at 
14.95 per cent of the total processing time in Mode TAC and the C++ 100X scenario 
peaked at 6.30 per cent. Both the Java and C++ met the performance criteria, but the Java 
implementation required roughly 2.5 times as much execution time. With the 200X 
scenario, all periodic frame deadlines continued to be met, but higher rate processing did 
preempt longer-duration lower rate processing. These results indicated that both the 
behavior and the performance of priority preemption was acceptable for this scenario.  
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0.020 6.511 6.491 6.500 200X 
0.012 3.152 3.140 3.144 100X 
0.016 1.499 1.483 1.488 50X 
0.004 0.550 0.546 0.548 20X 
0.001 0.060 0.059 0.059 1X 

C++ 

0.024 15.077 15.053 15.061 200X 
0.019 7.473 7.453 7.461 100X 
0.020 3.755 3.735 3.742 50X 
0.006 1.544 1.538 1.541 20X 
0.002 0.210 0.208 0.209 1X 

Real - 
Time  
Java 

Deviation Max Min Ave Scenario 

0.020 6.511 6.491 6.500 200X 
0.012 3.152 3.140 3.144 100X 
0.016 1.499 1.483 1.488 50X 
0.004 0.550 0.546 0.548 20X 
0.001 0.060 0.059 0.059 1X 

C++ 

0.024 15.077 15.053 15.061 200X 
0.019 7.473 7.453 7.461 100X 
0.020 3.755 3.735 3.742 50X 
0.006 1.544 1.538 1.541 20X 
0.002 0.210 0.208 0.209 1X 

Real - 
Time  
Java 

Deviation Max Min Ave Scenario 

 

Table 7. Infrastructure During Peak Operation (milliseconds) 

Determinism Success Criteria: The variability in the initiation of periodic processing 
frames shall not exceed 1 per cent of the associated period. The variability in the time 
required to process the application within each execution rate shall not exceed 5 per cent 
of the associated period.  

Determinism Results:  The variability in start of processing was less than 0.3 per cent for 
all scenarios of both Java and C++, easily beating the success criteria. The specific times 
measured between successive processing frames, and the associated jitter measured for 
each rate within the 100X scenario is shown in Figure 33. In addition to being within the 
success criteria, results indicate the deviation was evenly distributed around the average. 
Typically, a deviation in one processing frame was accompanied by an equally opposing 
deviation in the following frame (e.g., a 20-Hz frame time of 50.04 milliseconds in one 
frame would be immediately followed by a frame time of 49.96 milliseconds). 

 

0.04 1000.02999.981000.001 Hz 
0.05 200.02199.97200.005 Hz 
0.03 50.0149.9850.0020 Hz 
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0.31 200.15199.84200.005 Hz 
0.13 50.0749.9450.0020 Hz Real - 

Time  
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0.04 1000.02999.981000.001 Hz 
0.05 200.02199.97200.005 Hz 
0.03 50.0149.9850.0020 Hz 

C++ 

0.08 1000.04999.961000.001 Hz 
0.31 200.15199.84200.005 Hz 
0.13 50.0749.9450.0020 Hz Real - 

Time  
Java 

Deviation MaxMinAveFrame

 

Table 8. Start of Frame for 100X Scenario (msec) 

4.1.2 Memory Usage 

Test Description:  Measure process memory usage of each scenario 5 times over a 20-
second time span following reboot. The measurements were taken by executing a watch 
ps from the command line which reported the memory usage every 2 seconds.  
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Performance Success Criteria: The software system shall support execution within a 
memory limit of 100 MB, which is representative of associated avionics systems.  

Performance Results: The results are provided in Figure 34. Both the Java and C++ 
implementations met the performance criteria, although a firm conclusion would require 
full application and middleware functionality. The C++ utilized less memory than the 
Java.   
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Table 9. Memory Usage 

Determinism Success Criteria: The variability in the memory used by the software 
system during multiple identical runs shall not exceed 1 per cent.  

Determinism Results:  Within the precision of the measurement technique, there was no 
variation between the memory observed on five successive identical runs.  

4.1.3 Duration of Operation 

Test Description:  Sample times for frame initiation, periodic application processing, and 
infrastructure processing, and memory for the 100X scenario for a ten hour period, and 
ensure that they remain stable.  

Performance Success Criteria: The software system shall support prolonged period of 
operation of up to approximately ten hours.  

Performance Results:  The Java system successfully repeated the real-time behavior of 
the C++ and properly supported each of the periodic rates during the extended ten hour 
period. The results recorded at the end of operation from the Java scenario are illustrated 
in Figure 35, which match the short duration test results reported in the steady state test. 
Java memory usage was measured at 62.48 MB and C++ memory usage was measured at 
53.37 MB, which matches the short duration test results described in memory test. The 
Java and C++ memory remained under the 100 MB success criteria and did not vary 
during steady state operation for the ten hour duration. No memory leaks or other 
performance degradations were observed. 
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Figure 26. Duration of Operation 

4.1.4 Scalability 

Test Description: Measure the performance impact associated with adding software 
components.  

Performance Success Criteria: The software system will minimize the performance cost 
for adding software functionality to O (n log n).  

Performance Results:  Collecting the results from earlier tests, the scalability results for 
memory and infrastructure processing during peak operation is illustrated in Figures 36. 
Both Java and C++ performed in roughly linear time. The slope of the infrastructure 
processing time for Java is roughly 2.3 times the slope of the C++ line. Conversely, the 
slope of the memory usage line for C++ is roughly 2.5 times the slope of the Java line. 
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Figure 27. Scalability 

4.2 Flight Control Algorithm 

The flight control function contains a representative linear parameter varying (LPV) 
controller algorithm similar to those found in avionics embedded systems.  The algorithm 
contains relatively heavy use of floating point operations within matrix equations. The 
function was translated from C++ to Java in order to provide a side-by-side comparison 
of the C++ and Java configurations from a computational perspective. Of special note, 
the Java implementation was written to avoid dynamic memory allocation during steady-
state operation to match existing practice in our typical C++ implementations. This 
algorithm did not exploit unique real-time features, and was therefore measured in both 
real-time and non-real-time Java environments.  The flight controls algorithm is 
illustrated in Figure 37. 
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algorithm 
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Figure 28. Flight Controls Algorithm 

4.2.1 Steady-State Execution Time 

Test Description:  Measure the execution time for the flight controls function in a 
continuous loop for 1,000 samples.   In addition to the C++ and RT Java configurations, 
include the Java J2SE with HotSpot for reference.  The algorithm is run in the main 
program thread, with the Java implementations using heap memory 

Performance Success Criteria: Since this test was created to provide a relative 
comparison of throughput, no specific success criteria are defined. 

Performance Results:  The results are shown in Figure 38.   For this algorithm, the C++ 
implementation performed about 40 times faster than RT Java, and the Java performed 
about 19 times faster than RT Java on average.  The wide deviation and the proximity of 
the average and minimum times indicates the presence of timing spikes due to the non-
determinism of the plain Java implementation.  Even though memory is neither allocated 
nor deallocated during execution, RT JVM tests were repeated in immortal memory to 
check for any associated effects. The RT Java average execution time using immortal 
memory was measured at 3.498 milliseconds.  The time shown in Figure 38 is run outside 
of immortal memory. As expected for this test context, memory effects were minor (~0.5 
per cent). 
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The relative execution times of the floating point operations is also shown in Figure 38.  
Integer operations were also investigated.  The results indicated that the performance 
difference was not primarily due to arithmetic operations.  Profiling was performed on 
the RT Java implementation, and no condensed portion of the flight control algorithm 
was found to be consuming a majority of the execution time. Given the widely scattered 
nature of the performance difference, the performance is speculated to be due to the 
interpreted nature of the RT Java implementation and overall overhead associated with 
RT JVM memory management. 
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Figure 29. Throughput Performance  
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5 Real-Time Java Laboratory Demonstration 
In order to show the benefits of Real-Time Java, the RTJES project teamed up with the 
Insertion of Embedded Infosphere Support Technologies (IEIST) project to perform a 
laboratory demonstration.   The demonstration highlighted Real-Time Java code mobility, 
distribution, and portability. 

5.1 Real-Time Java Demonstration Overview 

A top-level overview of the Real-Time Java Demonstration is illustrated in Figure 39.  
The main components of this scenario are the Joint Battle Infosphere (JBI), F-15 Fighter 
Platform, Command and Control (C2) Platform, Force Template, Guardian Agent, and 
Guardian Agent Factory.    The JBI represents a military network that is activated during 
a battle designed for military assets to publish and subscribe information in real-time.  
The F-15 represents one of these military assets engaged in a battlefield scenario to 
destroy enemy targets.  The F-15 stores critical information about itself in a Force 
Template.  The Force Template contains mission planning data and mobile code to be 
downloaded to a Guardian Agent Factory located on a C2 Platform.  The Guardian Agent 
Factory is a static “always available” software entity design to create a Guardian Agent 
on demand.  The Guardian Agent is a dynamic software entity designed to interact with 
the JBI to publish and subscribe information for a platform entering the battlefield 
scenario.  This particular Guardian Agent used in this lab demonstration is for the F-15.  
The Guardian Agent filters the information for the F-15 so that the platform only receives 
the critical information required for the F-15 pilot to successfully complete his/her 
mission.  For the lab demonstration, the Guardian Agent Route Threat Evaluator was 
performed in Real-Time Java.  The real-time platform consisted of the following 
components: 

1) TimeSys Linux was used as the real-time operating system.   

2) TimeSys JTime was used as the real-time JVM.   

3) A built in scheduler was developed to support both periodic and aperiodic 
scheduling.    

4) The UCI Zen ORB was incorporated to provide distribution support using 
CORBA.   

5) An event service was developed to provide decoupled cross thread 
communication between software components of the Route Threat 
Evaluator.   

The basic scenario consisted of first transferring the Force Template containing the 
mobile code and mission planning data from the windows Guardian Agent Factory to the 
Real-Time Java Guardian Agent Factory.   The Real-Time Guardian Agent Factory in 
turn instantiated the mobile code and provided a distributed component for the rest of the 
guardian agent to communicate. 
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Figure 30. Real-Time Java Demonstration 

5.2 Route Threat Evaluator 

Figure 40, shows more of a detailed version of the internal workings of the Route Threat 
Evaluator (RTE).  The RTE Master Server Factory generates an RTE Master used for 
registration of the Guardian Agent.   Upon completion of Guardian Agent registration, 
the Guardian Agent receives a personal RTE platform server to perform communication.  
The RTE platform server is part of the mobile code that was transmitted during 
initialization. 

The RTE also handles route updates.  The new route is sent to the RTE platform server 
after registration has been completed.  The route updates are scheduled at a low priority 
to ensure threat analysis during operation has higher priority. 

The final task of the RTE is threat analysis.  The RTE analyzes the position and two 
dimensional signature of the platform to ensure proper threat analysis is performed.  The 
RTE provides a complete list of all the segments of the route exposed during execution 
and the time of impact to the exposure is also computed. 

The RTE can be used for future IEIST demonstration and provides software modules that 
are currently being incorporated into the rest of the Guardian Agent to improve 
performance.  The current capabilities of the RTE are listed below. 

1) Dynamic Class Loader – Allows for real-time customization of the RTE for 
specific platform requirements. 

2) Multiple Priority Scheduling – Used to provide precedence for target evaluation 
over other tasks like platform registration. 
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3)  Multiple Platform Registration – Allow for multiple platforms to use the RTE for 
threat evaluation. 

4) Two Dimensional Signature Analysis – Takes into consideration the two-
dimensional signature of the platform instead of a single point solution. 

5) Multiple Threat Evaluation – Tested with up to 1000 threats for a given analysis. 

routeThreatEvaluatorDriver :  
RouteThreatEvaluatorDriver 

rtePlatformServerImpl : 
RouteThreatEvaluatorPlatformServerImp

routeEvaluator : 
RouteEvaluator

threatEvaluator :  
ThreatEvaluator 

orbService :  
UUOrbService 

routeThreatEvaluatorFactory : 
RouteThreatEvaluatorServerFactory

routeTheatEvaluatorClientImpl :  
RouteThreatEvaluatorClientImpl 12. Update( )

17. Update( ) 

rteMasterServerImpl : 
RouteThreatEvaluatorMasterServerImpl

Client  
Side Server  

Side 
One route threat server  
per client.  Saves  
demuliplexing on the  
server end.  Candidate for  
code mobility. 

9. SendRouteUpdate(string)
14. SendUpdate(Threat, Platform)

3. RouteThreatEvaluatorClientImpl( ) 

4. Register(string, RouteThreatEvaluatorClientImpl)

10. SetRoute(string)

11. Push(UUEvent)

15. SetThreat(string) 
16. Push(UUEvent) 

8. ConfirmRegister(rtePlatformServerImpl)

13. ConfirmRouteUpdate( )

18. SendAnalysis(RouteEvaluation, RouteLegExposures)

2. Register(registerRTEMasterServerString, Object)

1. RouteThreatEvaluatorMasterServerImpl( ) 

5. RouteThreatEvaluatorPlatformServerImpl( )

7. Register(StringBuffer, RouteThreatEvaluatorClientImpl)

6. Register(rtePlatformServerImpl, Object) 

 

Figure 31. Route Threat Evaluator Scenario 

5.3 Distribution Benchmarks 

As a result of the demonstration, analysis was performed to determine the effects of 
distribution on the RT Java.  A driver was developed to exercise the RTE under 
maximum conditions.  The platforms registered with the RTE were varied with three test 
cases (1, 5, and 20 platforms) and the threats were varied in 100 threat increments from 0 
threats to 1,000 threats.  A side-by-side comparison was performed on regular Java using 
the standard Sun ORB and RT Java using the UCI Zen RT ORB.   The RTE was hosted 
on TimeSys Linux RT OS and the driver was hosted on a non real-time Windows OS 
platform. 
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The performance results of the demonstration are illustrated in Figure 41.   As shown on 
the graph, the standard Java was about 15 times faster than RT Java.  These performance 
results were consistent but slightly better than early benchmarks with the Flight Controls 
Algorithm.  The slight improvement in performance can be attributed to the efficiency 
improvements incorporated into the UCI Zen RT ORB.  Neglecting the effects of 
initialization, adding more threats provided linear performance growth with the time 
required to produce analysis. 
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Figure 32. Distribution Benchmarks 
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As a final metric, the deviation was measured using 900 threats, 25 samples, and varied 
platform quantities.  The Real-Time Java deterministic performance was significantly 
better than the standard Java in all cases.  Even when taking into consideration the 
improved execution performance of the standard Java, the absolute deviation for the RT 
Java was better than the standard Java.  These deterministic performance test results are 
illustrated in figure 42. 

 Deviation was measure using 25 samples,  
900 threats, and varied platform quantities 

Platforms RT Java % 
RT Java Abs 
Dev (ms) Java % 

Java Abs Dev 
(ms)

1 0.49% 5.23578 10.61% 7.54114 
5 0.29% 15.78437 5.32% 18.14233 

20 0.08% 16.92459 1.29% 17.18519  

Table 10. Deterministic Performance of Route Threat Evaluator with 900 Threats 
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6 Summary 
Java offers better portability, mobility, productivity, and aspect programming than other 
more traditional embedded software programming languages such as C++ and Ada 95.   
Also, Java provides interoperability with other programming languages.  One 
requirement in the past that has precluded developers from using Java for the embedded 
environment has been real-time deterministic performance.    The Real-Time 
Specification for Java (RTSJ) was written to encourage Java Virtual Machine (JVM) 
development to help bridge this real-time gap for the embedded software community.  
Unfortunately, 3 years have passed since initial release of the RTSJ, and there is only one 
commercially available product called TimeSys JTime Java that is RTSJ compliant.    We 
have completed significant benchmarking on JTime and find the product to have 
satisfactory real-time performance but poor throughput performance.  We observed 
significant reduction in throughput performance when using JTime compared to C++ and 
the standard Sun JDK Java.  JTime offers Ahead Of Time (AOT) compilation to help 
improve performance without precluding the use of code mobility for non-precompiled 
parts of the code.  Our experimentation with JTime AOT has demonstrated some 
improvement but not to the order of magnitude required for a production ready program.  
Also, the limited platforms available with JTime (only available on TimeSys Real-Time 
Linux) prevent the use of this product on most anticipated hardware platforms. 

Principal remaining areas of concern for our applications include startup time, memory 
management, and mixed language support. Some of these investigations will require 
running on an embedded target platform (e.g., without file systems), which were not 
currently supported in our experimentation system. 

Our results indicate that the basic prerequisite real-time characteristics for mission-
critical avionics systems are slowly emerging in commercial implementations.   We 
experienced great portability, mobility, productivity, and aspect programming benefits in 
working with Java.  However, the future of RT Java in whatever application depends 
largely on its being embraced by the commercial market place.  Without the support of 
these vendors, it will be at most a fringe player with performance substantially less than 
that of C++.   
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Abstract 

 Many of the benefits of Java, including its 
portability, networking support, and simplicity, are of 
increasing importance to large-scale distributed real-
time embedded (DRE) systems, but have been 
unavailable due to the lack of acceptable real-time 
performance. Recent work establishing the Real-Time 
Specification for Java (RTSJ) [1] has led to the 
emergence of Real-Time Java Virtual Machines (RT 
JVMs) that promise to bridge this gap. This paper 
describes benchmarking results on an RT JVM. This 
paper extends previously published results [2] by 
including additional tests, by being run on a recently 
available pre-release version of the first commercially 
supported RTSJ implementation, and by assessing results 
based on our experience with avionics systems in other 
languages.  

1. Introduction 

The Boeing Company is currently experimenting 
with Real-time (RT) Java as part of the Air Force 
Research Laboratory (AFRL) RT Java for Embedded 
System (RTJES) program [1].  This program investigates 
the use of Java in hard and soft large-scale distributed 
real-time embedded (DRE) avionic system applications.  
The program has two primary objectives: benchmarking 
RT Java implementations to assess their suitability for 
this domain, and demonstrating the operational benefit of 
RT Java features for network-centric applications.  This 
paper describes results of a portion of the network-
centric benchmarking effort on a pre-release version of 
the commercial JTime® RT JVM from TimeSys that 
implements the RTSJ. 

                                                           
[1] This work was sponsored by the Air Force Research Laboratory, 
Wright-Patterson Air Force Base, Information Directorate, under 
contract F33615-97-D-1155-0008. 

The RTSJ defines a set of classes which provide 
capabilities supporting real-time operation in a Java 
environment, including threading, scheduling, event 
handling, synchronization, and memory management.  
Specially constructed RT JVMs support the real-time 
semantics defined in the class library specification. 

Our benchmarking efforts focus on assessing the 
performance and determinism of systems using these RT 
JVM features via two sets of tests.  The first set of tests 
(which are discussed in this paper) assesses the 
characteristics of individual RTSJ features.  The second 
set of tests (which are not discussed in this paper) 
investigates performance within an environment that is 
representative of an actual avionics application, based on 
our experience with reusable component-based avionics 
systems on the Boeing Bold Stroke initiative [3].  We 
plan to publish these latter test results when complete. 

The remainder of this paper is organized as follows.  
Section 2 describes the experimental system 
configuration.  Section 3 describes the low-level RTSJ 
benchmarking results.  Concluding remarks and 
acknowledgements follow in Sections 4 and 5, 
respectively.   

2. Experimentation System  

This section describes the configuration of both the 
hardware and software test platform.   

2.1. Hardware System 

A Dell GX 150 computer was used for Java 
benchmark development and execution. This computer 
has a 1.2 Gigahertz Pentium 4 single processor. It has a 
12 GB hard drive, 256 MB of RAM, 256 KB of cache 
memory, and 900 MB of swap memory.  
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2.2. Software System 

As of this writing, the only known commercial 
implementation of the RTSJ is from TimeSys, for which 
we received a pre-release version. Prior to availability of 
this product, we developed tests and measured results on 
the openly available Reference Implementation (RI), also 
from TimeSys. The RI was designed to investigate and 
demonstrate the semantics of the RTSJ, not for 
production-quality run-time performance. Prior RI 
benchmarking confirmed this [2], but these results are 
not included here due to space constraints.  

The test platform was configured with Red Hat 
Linux version 7.2, with real-time support provided by 
TimeSys Linux/NET for X86 UNI platform operating 
system extensions, version 3.1.214c, and TimeSys RT 
JVM version 3.5.3.  

The JVM was executed with a memory allocation 
pool of 50 MB (-Xms50M).  The immortal memory size 
was set to 80 MB (IMMORTAL_SIZE=80000000). 

The tests were developed with the Jakarta Ant 
version 1.4.1 build tool with  javac from the Java 
Development Kit (JDK) version 1.2.2.  This javac 
version was selected due to version compatibility issues 
in libraries used in the avionics application test set. No 
just in time or ahead of time compilation was performed 
for these tests. 

3. RTSJ Testing 

These tests focus on assessing the performance of 
specific RTSJ capabilities. These tests are being added to 
the RTJPerf open source RT JVM benchmarking suite 
established by Angelo Corsaro at the University of 
California, Irvine (UCI) [4] and Washington University 
in St. Louis.  Taken together, tests were created to assess 
determinism, latency, and throughput associated with 
threads, scheduling, memory management, 
synchronization, time, timers, asynchrony, exceptions, 
and class loader and dynamic linking.  Only the tests 
deemed of most importance are included here due to 
space constraints. 

For each test, a description of the test is included, 
along with success criteria, and experimental results and 
analysis.  The success criteria are based on requirements 
and experiences with avionic mission computing 
systems. While these criteria are intentionally domain 
specific, they do capture expectations for an important 
category of embedded systems.   In all cases, the raw 
measured values are provided for comparison against 
criteria in other domains. 

3.1. Throughput 

The RTSJ introduces two new types of threads as 
shown in Figure 1: RT threads and No Heap RT (NHRT) 
threads. RT threads support, at a minimum, basic real-
time preemptive scheduling. No Heap RT threads add the 
guarantee that execution will be independent of garbage 
collection but with the additional restriction that heap-
based memory not be used. This section outlines tests 
assessing the throughput of these different thread types in 
varying execution environments. 
 

ja v a . la n g . Th r e a d

ja v a x . r e a lt im e . R e a lt im e Th r e a d

ja v a x . r e a lt im e . N o H e a p R e a lt im e Th r e a d

 
Figure 1.  Thread Inheritance in RT Java 

3.1.1 Thread Throughput 

Description:  Record the execution time of a 
computationally intensive algorithm, representative of 
avionics mission computing processing, when run in 
different thread types: NoHeapRealtimeThread (NHRT), 
RealtimeThread (RT), and java.lang.Thread. All three 
thread types will be processing in a 20 Hz frame.  In the 
thread’s run() method, log timestamps before and after 
the algorithm executes.  This computationally intensive 
algorithm is a flight controls algorithm that is CPU 
intensive and reads data from two different input files.  
The flight controls algorithm performs all of its memory 
allocation and reference storage upon initiation.  The 
NoHeapRealtimeThreads were executed using Immortal 
memory which has no garbage collection while the 
RealtimeThreads were executed from heap memory.   

Success Criteria:  Throughput in different threads 
shall not vary by more than 1% 

Results:  The throughput for NHRT, RT, and normal 
java threads on the selected algorithm was comparable. 
The largest percentage time difference between the three 
thread types was 0.643% for the NHRT and RT threads.  
See Table 1 for more throughput comparisons between 
NHRT, RT, and normal threads. 
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Table 1. Algorithm Execution Times Within 
Different Thread Types (milliseconds) 

 

Time in 
NHRT 

Threads 

 
Time in 

RT 
Threads 

Time in 
Normal 
Threads 

 
Time (% 

Difference)

Avg 3.5201 3.5087 3.5174 0.324% 
Max 3.5372 3.5601 3.5439 0.643% 
Min 3.5109 3.4977 3.5076 0.376% 

3.1.2 Thread Throughput With Contending 
Background Threads 

Description: Record the execution time of the same 
mission computing algorithm, when run with different 
scheduling parameters and competing threads.  The 
algorithm is CPU intensive and executes in a 
NoHeapRealtimeThread with a priority of 260.  Measure 
how the same functionality scheduled with varying 
numbers of lower priority threads behaves.  The 
contending threads execute in RealtimeThreads with 
lower priorities.  The lower priority threads log 
timestamps and invoke yield() methods.  All threads 
are periodic, executing at a 20 Hz frame rate. 

Success Criteria: Difference between the tests with 
no background threads and the tests with 15 background 
threads shall be less than 5%. 

Result:  The first case schedules only the thread 
being analyzed, while the second case schedules the 
thread to be analyzed along with 15 background threads.  
The difference between the maximum, minimum, and 
average data points were all below 1%.  This meets our 
success criteria.  See Table 2 for detailed metrics. 

 
Table 2. Algorithm Execution Times with 

Contending Background Threads (milliseconds) 

 
0 Other 
Threads 

15 Other 
Threads 

% 
Difference

Avg 3.5253 3.5290 0.1039% 
Max 3.5395 3.5669 0.7673% 
Min 3.5218 3.5244 0.0756% 

Jitter 0.0177 0.0424  
 

3.2. Determinism 

The RTSJ provides direct support for initiating 
functionality that needs to be run at periodic intervals 
either via thread scheduling or via events driven by 
timers. This section outlines tests investigating timing 

jitter associated with initiating and completing periodic 
activities. 

3.2.1 Periodic Start of Frame Determinism 

Description: Using the PeriodicParameters 
class, establish a periodic thread.  Immediately after the 
waitForNextPeriod() call, log a timestamp and 
calculate the time between invocations. Two tests were 
conducted.  The first test was executed with only a single 
20 Hz NoHeapRealtimeThread being analyzed, while the 
second test was executed with the 20 Hz 
NoHeapRealtimeThread thread being analyzed while 
another fifteen lower priority RealtimeThread threads 
were executing at a 20 Hz frame rate.  The lower priority 
threads log timestamps and invoke yield() methods.  
All threads are periodic, executing at a 20 Hz frame rate. 

  Success Criteria: Jitter shall be within 1% of the 
period. With a representative avionics processing rate of 
20 Hz, the maximum allowable jitter is 0.5 milliseconds.  

Results: The maximum jitter in both tests easily 
surpassed the success criteria of 0.5 milliseconds.  See 
Table 3 for details. 

 
Table 3. 20 Hz Frame Execution Times Measured 

at Frame Start Up (milliseconds) 

 0 Other Threads 15 Other Threads
Avg 50.0 50.0 
Max 50.0048 50.0241 
Min 49.9954 49.9794 

Difference 0.0094 0.0447 

3.2.2 Periodic End of Frame Determinism 

Description: Using the PeriodicParameters class, set 
up a periodic NoHeapRealtimeThread thread.  
Immediately after the waitForNextPeriod() call, 
execute an algorithm of significant duration but not 
longer than the period.  After the algorithm completes, 
log a timestamp and calculate the difference between 
successive timestamps. Repeat with and without 
competing lower priority RealtimeThread threads as for 
the previous test.  The lower priority threads log 
timestamps and invoke yield() methods.  All threads 
are periodic, executing at a 20 Hz frame rate.  

Success Criteria: Completion time differences shall 
be under 0.5 milliseconds. This represents 1% of a 20 Hz 
frame. 

Results: The maximum jitter for 0 and 15 competing 
threads was 0.0282 milliseconds and 0.1441 
milliseconds, respectively, which easily met the success 
criteria.  See Table 4 for specific measurement results. 
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Table 4. Frame Execution Times Measured at 

Frame Completion (milliseconds) 

 0 Other Threads 15 Other Threads
Avg 50.0000 50.0000 
Max 50.0153 50.0688 
Min 49.9870 49.9247 

Difference 0.0282 0.1441 

3.2.3 Periodic Event Determinism 

Description: Measure the jitter in PeriodicTimer 
driven AsyncEvents.  Immediately inside the 
handleAsyncEvent method, log a timestamp and 
calculate the time between invocations. The first test was 
executed with only a single 20 Hz 
NoHeapRealtimeThread being analyzed, while the 
second test was executed with the 20 Hz 
NoHeapRealtimeThread thread being analyzed while 
another fifteen lower priority RealtimeThread threads 
were executing at a 20 Hz processing rate also.   

Success Criteria: Periodic event timing differences 
shall be under 0.5 milliseconds, 1% of a 20 Hz (50 
millisecond) frame. 

Results: The first case was run with the 
AsyncEventHandler analyzing a single thread while the 
second case was executed with the AsyncEventHandler 
analyzing a single thread with fifteen background 
threads.  The third case was run with the 
BoundAsyncEventHandler analyzing one thread while 
the fourth case was executed with the 
BoundAsyncEventHandler analyzing a single thread with 
fifteen background threads.  In all cases, the jitter met the 
success criteria.  See Table 5 for more completion time 
comparisons with and without competing threads.   

3.3. Latency 

This section details tests assessing delays associated 
with context switching, synchronization, and event 
delivery. The RTSJ supports event-based programming 
for two types of event handlers: bound and unbound.  A 
bound event handler creates one thread that is 
permanently bound to the handler and remains active for 
all event fires.  An unbound event handler creates a new 
thread with each event fire. 

Table 5. 20 Hz Frame Execution Times Measured 
at the Event Fire (milliseconds) 

 

0 Other Threads 
Unbound / 

Bound 

15 Other Threads
Unbound / 

Bound 

Avg 50.0000 / 
50.0000 

50.0000 / 
50.0000 

Max 50.0667 / 
50.0087 

50.0908 / 
50.0954 

Min 49.9337 / 
49.9920 

49.9386 / 
49.9024 

Delta 0.1330 / 
0.0167 

0.1522 / 
0.1930 

3.3.1 Context Switch Latency 

Description:  Initiate a high priority thread and a 
lower priority thread.  Both threads will be executing at a 
20 Hz frame rate.  In the higher priority thread, log a 
timestamp before the yield() in the run method.  In 
the lower priority thread, log a timestamp after the 
yield() in the run method.  Then compute the latency 
between the higher priority thread’s timestamp and the 
lower priority thread’s timestamp. 

Success Criteria: Context switch latency shall be 
less than 10 microseconds. 

Results: See Figure 2 for a graph of the context 
switch latency data samples. The results show a median 
of approximately 2.1 microseconds. Some of the samples 
spike to 2.3-2.8 microseconds, probably indicating that 
some processing in addition to the context switch is 
being run following the yield() call. Even with this, 
however, the maximum time to switch between threads 
was roughly 2.8 microseconds, which is better than the 
10 microsecond success criteria.   
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Figure 2. Context Switch Latency 
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3.3.2 Priority Inheritance Latency 

Description: This test measures a relatively simple 
three thread case of priority inheritance. The low priority 
thread (LPT) starts and enters a synchronized method.  
While in that method, the medium priority thread (MPT) 
starts and preempts the LPT.  While the MPT runs, a 
high priority thread (HPT) preempts the MPT and 
attempts to enter the same synchronized method the LPT 
presently has a lock on.  According to priority 
inheritance, the LPT should get boosted up to the priority 
of the HPT so it can finish with the synchronized 
method, thus allowing the HPT to run as soon as 
possible.  Log timestamps before and after the calls to the 
synchronized method.  Also log timestamps at the first 
and last instructions inside the synchronized method.  
These timestamps are used to measure the boost, 
unboost, and total priority inheritance latency times.  
Each thread will execute at a 20 Hz frame rate. 

Success Criteria: Priority latency shall be under 50 
microseconds for boosting and unboosting priorities 
combined. 

Results: For both cases the maximum latency was 
roughly 9.0 microseconds, thus the test passed the 50 
microsecond success criteria.  See Table 6 for more 
priority inheritance boost, unboost, and total latencies. 

Table 6. Priority Inheritance Latency 
(microseconds) 

 Boost Unboost 
Latency 

(Boost + Unboost)
Avg 5.1372 2.7735 7.9107 
Max 6.2626 3.1574 8.9635 
Min 4.4778 2.6517 7.1566 

Delta 1.7849 0.5057 1.8070 

3.3.3 Synchronization Latency 

Description: Record the time elapsed to enter a 
synchronized method versus a non-synchronized method.  
Log timestamps prior to the method call and once inside 
the synchronized and non-synchronized methods.  Each 
thread will execute at a 20 Hz frame rate. 

Success Criteria: Synchronization latency shall be 
under 5 microseconds of overhead (difference between 
synchronized and non-synchronized). 

Results: The test was executed for the synchronized 
and normal method latency cases.  For each case the 
latency differences were less than 2 microseconds, thus 
this test passes the 5 microsecond threshold.  See Table 7 
for more synchronized and non-synchronized latencies. 

Table 7. Synchronization Latency 
(microseconds) 

 
Non- 

Synchronized Synchronized 
 

Difference 
Avg 1.3351 3.2385 1.9034 
Max 1.7257 3.6962 1.9705 
Min 1.3153 3.1975 1.8822 

3.3.4 Event Latency 

Description: Measure the latency from the firing of 
an AsyncEvent to the time it is handled.  Log timestamps 
prior to the fire and once the event is handled.  Each 
thread will execute at a 20 Hz frame rate. 

Success Criteria: Event latency shall be under 100 
microseconds.  

Results:  BoundAsyncEventHandler was used for the 
first case and AsyncEventHandler was used for the 
second.  Both the BoundAsyncEventHandler and 
AsyncEventHandler were acceptable for our needs since 
all cases met the success criteria.  Table 8 compares the 
BoundAsyncEventHandler and AsyncEventHandler 
latencies. Analysis of the data indicates that a relatively 
few measurement spikes were observed as in Section 
3.3.1. 

Table 8. Event Latency (microseconds) 

BoundAsyncEventHandler AsyncEventHandler
Avg 14.675 14.584 
Max 27.649 27.241 
Min 14.355 14.339 

Delta 13.294 12.902 

3.4. Memory Management 

The RTSJ defines a range of different memory types 
to address real-time aspects of memory management and 
garbage collection. This section details tests with 
allocation throughput, entry, and exit performance for the 
Heap, Immortal, Linear Time (LT) Memory, and 
Variable Time (VT) memory areas. The Allocation Time 
and Throughput Time tests were created by the Jet 
Propulsion Laboratory.  See Figure 3 for a diagram of 
MemoryArea inheritance relationships in the RTSJ.  In 
Figure 3, the Memory Area classes that are colored 
represent the classes with test results included herein. 
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MemoryArea

ImmortalMemoryScopedMemory ImmortalPhysical
Memory

HeapMemory

LT Memory VT Memory LT Physical Memory VT Physical Memory

 
Figure 3. Memory Area Class Inheritance 

3.4.1 Allocation Time vs Memory Area 

Description:  Measure the time required to allocate 
the same sized objects in different memory areas.  Place 
time stamps before and after the memory allocation code.  
Then calculate the difference between before and after 
times for memory allocation.  Perform this test for 
various object sizes from 4 to 16,384 bytes.  Each thread 
executes at a 20 Hz periodic frame rate. 

Success Criteria: Average allocation time less than 2 
microseconds/byte shall be acceptable. 

Results:  The average time to create 64 byte objects 
took less than 16 microseconds for all memory areas, 
meeting the success criteria.  The times for immortal, 
linear time, and variable time memory areas were nearly 
identical for this test. See Figure 4 for per-byte allocation 
times in the different memory areas.  
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Figure 4. Maximum Memory Allocation Time per 

Byte for multiple byte objects 

3.4.2 Throughput vs Memory Area 

Description: Measure the time needed to execute a 
division, trigonometric, and no operation in each memory 
area.  The division operation is a ‘divide by 2’ while the 
trigonometric operation takes the ‘log of 5’. Place time 

stamps before and after the call to each operation.  Each 
thread will execute at a 20 Hz frame rate. 
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Figure 5. Operation Execution vs Memory Area 

Success Criteria: The throughput values shall be 
within 5% across all memory types. 

 
Table 9. Operation vs Memory Area 

 Min Max % Delta 

Float 0.5300 0.5500 4% 

Trig 1.0400 1.0667 2.5% 

No op 0.3667 0.3700 0.9% 
Result:  As tabulated in Table 9, the percent variation of 
operation execution across all memory areas was less 
than 4% thus meeting our success criteria.  

3.4.3 Memory Area Entry/Exit 

Description: Log timestamps before entering a 
MemoryArea and immediately upon entering.  Also 
record timestamps prior to leaving the scope and 
immediately after leaving the scope.  Each thread will 
execute at a 20 Hz frame rate. 

Success Criteria:  Average memory area entry time 
shall be 100 microseconds or less.  Average memory area 
exit time shall be 100 microseconds or less. 

Results: The average memory entry and exit times 
were under 20 microseconds for all measured memory 
types.  Therefore this test passed the success criteria.  
The exit times for LT Memory and VT Memory was 
substantially more than for other memory areas because 
the garbage collector is executed on these memory areas 
when their scope is freed.  See Figure 6 for a graph 
mapping the time to enter and exit the various 
MemoryAreas.  
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Figure 6. Average Memory Area Entry/Exit Times 

4. Concluding Remarks 

The experimental results in this paper indicate that 
emerging RTSJ implementations are capable of 
providing real-time characteristics with sufficient 
performance to meet key avionics system requirements. 

There are still some areas that motivate further 
investigation. These areas include relative throughput to 
C++ or other languages, performance of memory 
management including garbage collection, and continued 
investigation into timing spikes as noted in the results.  
Our early results, however, indicate that the principal 
prerequisite real-time characteristics for mission-critical 
avionics systems are emerging in commercial 
implementations and hold promise in meeting the vision 
of bringing Java to large-scale DRE systems.  

A second set of tests (which are not discussed in this 
paper) investigates performance within an environment 
that is representative of an actual avionics application, 
based on our experience with reusable component-based 
avionics systems on the Boeing Bold Stroke initiative. 
This paper will provide insight into a comparison 
between avionics mission computing applications that 
have been written in both RT Java and C++ that are 
based on a Bold Stroke application. We plan to publish 
these latter test results when complete. 
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Abstract 

 Many of the benefits of Java, including its inherent 
portability, networking support and simplicity, are of 
increasing importance to large-scale distributed real-
time embedded (DRE) systems, but have been 
unavailable due to the lack of acceptable real-time 
performance. Recent work establishing the Real-Time 
Specification for Java (RTSJ) [i] has led to the 
emergence of associated Real-Time Java Virtual 
Machines (RT JVMs) which promise to bridge this gap. 
This paper describes benchmarking results on a RT JVM 
in a uni-processing environment, and compares them to 
both C++ implementations of similar behavior and 
application requirements associated with large-scale 
avionics systems. This paper extends previously 
published results [ii][iii] by including avionics 
application level tests.  

1. Introduction 

The Boeing Company is currently experimenting 
with Real-Time (RT) Java as part of the Air Force 
Research Laboratory (AFRL) Real-Time Java for 
Embedded System (RTJES) program*. This program 
investigates the use of RT Java in hard and soft large-
scale Distributed Real-Time Embedded (DRE) avionic 
system applications. This paper describes the results of a 
benchmarking effort to assess large-scale component-
based avionics applications on a pre-release version of 
the commercial JTime RT JVM from TimeSys that 
implements the RTSJ. 

The overall benchmarking effort is divided into two 
sets of tests. The first set of tests, discussed in prior work, 
assesses the characteristics of individual RTSJ features. 
The second set of tests is outlined in this paper and 
investigates performance within an environment that is 
more representative of an actual avionics application 

                                                 
* This work was sponsored by the Air Force Research Laboratory, 
Wright-Patterson Air Force Base, Information Directorate, under 
contract F33615-97-D-1155-0008. 

based on our experience with reusable component-based 
avionics systems on the Boeing Bold Stroke initiative 
[iv].  

The remainder of this paper is organized as follows. 
Section 2 describes the experimental system and testing. 
Conclusions and Acknowledgements follow in Sections 3 
and 4, respectively.  

2.  Experimental system and testing  

This section describes the configuration of both the 
hardware and software elements of the test platform. 

2.1. Hardware system 

The same hardware, a Dell GX 150, was used for all 
benchmark development and execution. This computer 
has a single 1.2 GHz Pentium 4 processor, a 12 GB hard 
drive, 256 MB of RAM, and 256 KB of cache memory. 

2.2. Software system 

Table 1 lists the major software products used 
for the experiments, as well as the compiler options used 
that are associated with performance. All Java tests were 
run with bytecodes generated by Jikes being interpreted 
in the JVM. For associated tests, the RT JVM was 
executed with a memory allocation pool of 50 MB 
(-Xms50M). The immortal memory size was set to 10 
MB (IMMORTAL_SIZE = 10000000).   The options 
used by the C++ compiler were: -O3 –g –fno 
-exceptions –fcheck –new. The -g option was 
added to provide similar debugging capabilities to what 
was available via the default options were used with the 
Jikes compiler. 
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Table 1. Software packages 

 C++ RT Java Java 
Build 
Tools 

GNU Make 
version 3.79.1 

Apache Ant 
Version 1.5.3 

Compilers GNU C++ 
version 3.1.1 

Jikes version 1.14 
 

 

TimeSys 
RT JVM 
version 
3.5.3 

Run-Time 
Platform 

TimeSys Linux/NET for 
X86 UNI version 3.1.214c 

Java J2SE 
with 

HotSpot 
version 
1.4.1-2 

 
To minimize non-deterministic system effects, all 

unnecessary operating services were stopped, virtual 
memory was disabled, and the system was rebooted in 
between tests.  Timing was begun immediately upon the 
first execution of each test, without any “pre-test warm 
up” period.  

The application test suite consists of a flight control 
function and a set of end-to-end application test 
scenarios. The flight control function was designed to 
investigate performance of a representative numerical 
algorithm. The end-to-end test program was designed to 
investigate performance of component, middleware, and 
JVM interactions and behaviors in the context of a 
representative cyclically executing avionics application 
architecture. Application component functionality was 
not designed to be representative of actual avionics 
applications for these tests; the focus was on 
representative application, JVM, and middleware 
interactions. 

2.3. Flight control algorithm test and results 

The flight control function contains a representative 
linear parameter varying (LPV) controller algorithm 
similar to those found in embedded avionics systems.  
The algorithm contains relatively heavy use of floating 
point operations within matrix equations. The function 
was translated from C++ to Java in order to provide a 
side-by-side comparison of the C++ and Java 
configurations from a computational perspective. Of 
special note, the Java implementation was written to 
avoid dynamic memory allocation during steady-state 
operation to match existing practice in our typical C++ 
implementations. This algorithm did not exploit unique 
real-time features, and was therefore measured in both 
real-time and non-real-time Java environments for 
comparison purposes. 

Test Description:  Measure the execution time for 
the flight controls function in a continuous loop for 1000 
samples.   In addition to the C++ and RT Java 

configurations, include the Java J2SE with HotSpot for 
reference.  The algorithm is run in the main program 
thread, with the Java implementations using heap 
memory. Execution performance results for different 
RTSJ thread types is described in [3]. 

Performance Success Criteria: Since this test was 
created to provide a relative comparison of throughput, 
no specific success criteria are defined. 

Performance Results:  The results are shown in 
Table 2. For this algorithm, the C++ implementation 
performed about 40 times faster than RT Java and about 
2 times faster than Java on average. The wide deviation 
and the proximity of the average and minimum times 
indicates the presence of timing spikes due to the non-
determinism of the plain Java implementation. Even 
though memory is neither allocated nor deallocated 
during execution, RT JVM tests were repeated in 
immortal memory to check for any associated effects. 
The RT Java average execution time using immortal 
memory was measured at 3.498 milliseconds. The time 
shown in Table 2 is run outside of immortal memory. As 
expected for this test context, memory effects were minor 
(~0.5%). 

Table 2. Flight controls function execution time 
(milliseconds) 

 Ave Min Max Deviation 
RT Java 3.479 3.474 3.565 0.092 

C++ 0.085 0.085 0.097 0.013 
Java 0.181 0.179 0.503 0.324 

 
To better understand the source of the performance 

differences between the different environments, 
associated floating point operations were investigated. 
The flight controls function contains 120 multiply, 52 
divide, 118 add, and 97 subtract floating point operations.  
Table 3 contains the execution times of floating point 
operations in the three different environments on the test 
platform.  

Table 3. Individual floating point operation 
execution time (nanoseconds) 

Operation RT Java C++ Java 
Multiply 352.5 128.6 168.7 
Divide 349.3 127.6 176.8 
Add 239.4 43.1 59.4 

Subtract 239.4 42.6 59.4 
 
Based on the specified numbers of each type of 

floating point operation, Table 4 contains the total 
execution time attributable to floating point operations in 
each environment as both an absolute value and as a 
percentage of the complete execution time. These results 
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indicate that floating point operations consume a small 
fraction of the time in the RT Java case, and that floating 
point operation is therefore not the determining factor in 
the performance difference between the three 
environments. Floating point time is a significant portion 
of the execution in the other two environments, however. 

Table 4. Total floating point operation execution 
time (microseconds / % of total execution time) 

RT Java C++ Java 
111.9 

(3.22%) 
31.3 

(36.81%) 
42.2 

(19.7%) 
 
Because floating point performance did not represent 

the deciding factor, integer performance was 
investigated. Due to large number of integer operations 
that are performed implicitly for array indexing and other 
operations, determining the number of integer operations 
of each type was not attempted. Table 5 contains the 
timing associated with integer operations on the test 
platform, obtained by timing a large number of 
consecutive operations on prime numbers. In the worst 
case (subtraction), RT Java performance was ~5.6 times 
slower than C++. Since this is significantly less than the 
overall performance factor for the complete flight 
controls algorithm (i.e. 40 times slower for RT Java), 
integer performance is also not judged to be the source of 
the performance difference. 

Table 5. Individual integer operation execution 
time (nanoseconds) 

Operation RT Java C++ Java 
Multiply 58.0 11.6 19.0 
Divide 90.5 12.9 45.9 
Add 42.3 2.9 14.5 

Subtract 42.1 4.8 14.5 
 
The execution time difference is therefore not 

primarily due to arithmetic performance. Profiling was 
performed on the RT Java implementation, and no 
condensed portion of the flight control algorithm was 
found to be consuming a majority of the execution time. 
One known overhead contributor is the RT Java bytecode 
interpreter. Future investigations using ahead of time 
compilation are planned to determine whether or not this 
is the primary cause or whether some latent cause is 
present. 

2.4. End-to-end application tests and results 

For the end-to-end application tests, success criteria 
have been derived from key operational metrics based on 

our experience with the required run-time performance of 
a range of avionics systems.  A mock-up operational 
flight program was developed with 804 software 
components instances, oscillating modal behavior, three 
rate group priority threads (20Hz, 5Hz, and 1Hz), 604 
event pushes per second, and 5% event correlation [v].   
Further details exceed space limitations here. This 
program represents the size and event behavior of a 
typical avionics mission computing program.   The RT 
Java classes used during the test were the 
RealtimeThread, Periodic Papameters, RelativeTime, 
BoundAsyncEventHandler, and AsyncEvent. 

Test Description:  Measure the frame initiation, 
periodic application processing, and infrastructure 
processing for each test scenario.   For the Java 
implementation, execute the processing within real-time 
threads (not No Heap Real-time Threads) in heap 
memory (not immortal memory). 

Performance Success Criteria: The software system 
shall support execution of multiple periodic rates of 
application components up to 20 Hz. The execution time 
required for infrastructure services (e.g. middleware, 
JVM, operating system) shall not exceed roughly 10% of 
the total processing time for the set of services included 
in this benchmark.  

Performance Results:  The results from the Java and 
C++ 100X scenarios are illustrated in Figures 3 and 4, 
respectively. Both figures display 16 seconds of 
processing time (20 samples per second for 16 seconds 
for 320 total samples). The two-second cyclical (40 
samples at 20 Hz) processing represents the scenario’s 
modal behavior, with the system changing mode each 
second. The 20 Hz line represents the sum of the 
processing time within each 20 Hz period for all 20 Hz 
rate components. The 5 Hz line shown is obtained by 
summing all of the associated component execution times 
over a 200 millisecond period and dividing the sum by 
four to normalize it to the 20 Hz data. Similarly, the 1 Hz 
and infrastructure lines indicate the aggregate time of 1 
Hz components and infrastructure processing for a 1 
second period, scaled to 20 Hz periods. Thus, within each 
mode, adding up the times for each rate provides the 
average execution time used within each 20 Hz 
processing frame. For example, if the beginning of the 
RT Java time trace is observed, approximately 0.1 + 3.0 
+ 4.1 + 7.6 = 14.8 milliseconds out of every 20 Hz frame 
are consumed by application and infrastructure 
execution, leaving 50 – 14.8 = 35.2 milliseconds of idle 
time in each frame on average. 

The Java successfully repeated the C++ real-time 
behavior and properly supported the periodic rates. All 
deadlines were achieved with 85.05% of the processor 
utilization available for application processing. 

 Additional application testing investigated 
performance in a number of other areas, including steady 
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state determinism of periodic execution, memory usage, 
long-duration execution, and scalability.   These tests also 
performed well within acceptable limits.  The results of 
these tests have been omitted due to space constraints.   
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Figure 1. RT Java steady state execution time 
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Figure 2. C++ steady state execution time 

3. Conclusion 

In general, our experiments indicate that emerging 
RTSJ implementations are capable of providing the real-
time characteristics necessary to meet key avionics 
system requirements considered in this paper, even when 
applications exceed the number of components found in 
many avionics systems. In general, measured throughput 
was slower for Java, partially attributable to bytecode 
interpretation in this experimentation configuration. A 
recently available ahead of time compiler focuses on 
mitigating these effects, but was not included in these 
experiments. These results showed significant progress 
towards practical applicability from earlier RTSJ 
implementations. As typically experienced in business 

applications, the Java implementations were judged 
significantly easier to develop than the C++ 
implementations, although RTOS and RT JVM 
configuration proved somewhat challenging. Java 
development speed was significantly aided by faster 
system build times due to lack of full ahead of time 
compilation. 

Principal remaining areas of concern for our 
applications include throughput, start-up time, memory 
management, distribution, and mixed language support. 
Some of these investigations would require running on an 
embedded target platform (e.g., without filesystems) 
which were not currently supported in our 
experimentation system. Our results, however, indicate 
that the basic prerequisite real-time characteristics for 
mission critical avionics systems are emerging in 
commercial implementations and hold promise in 
meeting the vision of bringing Java to large-scale real-
time embedded systems.  
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List of Acronyms and Abbreviations 

Acronym  Description 
 
AFRL - Air Force Research Laboratory 
ANT - Another Neat Tool 
AOP - Aspect Oriented Programming 
AOT -  Ahead Of Time Compilation 
API - Application Programming Interface 
CORBA - Common Object Request Broker Architecture 
COTS - Commercial Off The Shelf 
DARPA -  Defense Advance Research Projects Agency 
ERM - Event Registration Manager 
FACET - Framework for Aspect Composition for an EvenT Channel 
GUI - Graphical User Interface 
IEIST - Insertion of Embedded Infosphere Support Technologies 
JBI - Joint Battle Infosphere 
JCP - Java Community Process 
JDK -  Java Development Kit 
JPL - Jet Propulsions Laboratory  
JSR - Java Specification Request 
JVM - Java Virtual Machine 
LT - Linear Time 
MoBIES - Model-Based Integration of Embedded Software 
NAV - Navigation Steering 
NCO - Network Centric Operations 
NHRT - No Heap Real-Time 
OEP - Open Experiment Platform 
OFP - Operational Flight Program 
ORB - Object Request Broker 
POSIX - Portable Operating Systems Interface Standard 
RI - Reference Implementation 
RT - Real-Time 
RTAS - Real-Time and Embedded Technology and Application Symposium 
RTE - Route Threat Evaluator 
RTJES - Real-Time Java for Embedded Systems 
RTSJ - Real-Time Specification for Java 
RTSS - International Real-Time Systems Symposium  
TAC -  Tactical Steering 
TCK   -  Technology Compatibility Kit 
TIM - Technical Interchange Meeting 
TR - Technical Report 
UCI - University of California, Irving 
VT - Variable Time 
WSSTS - Weapon Systems Software Technology Support 
WU - Washington University 
XML - Extensible Markup Language 
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